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1.0 INTRODUCTION

This section provides a description of t'he study in terms of background, objectives,
issues, organization of study and report, and the content of this specific volume.

Use of trade names, names of manufacturers, or recommendations in this report
does not constitute an official endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

And finally, it should be recognized that this study was conducted prior to the STS
safety review that resulted in an STS position of "no Centaur in Shuttle" and
subsequently an indication of no plans to accommodate a cryo OTV or OTV propellant
dump/vent. The implications of this decision are briefly addressed in section 2.2 of the
Volume [ and also in Volume I[X reporting the Phase Il effort which had the OTV
launched by an unmanned cargo launch vehicle. A full assessment of a safety

compatible eryo OTV launched by the Shuttle will require analysis in a future study.

1.1 BACKGROUND

Access to GEO and earth escape capability is currently achieved through the use
of partially reusable and expendable launch systems and expendable upper stages.
Projected mission requirements beyond the mid-1990's indicate durations and payload
characteristics in terms of mass and nature (manned missions) that will exceed the
capabilities of the existing upper stage fleet. [Equally important as the physical
shortfalls is the relatively high cost to the payload. Based on STS launch and existing
upper stages, the cost of delivering payloads to GEO range from $12,000 to $24,000 per
pound.

A significant step in overcoming the above factors would be the development of a
new highly efficient upper stage. Numerous studies (ref. 1, 2, 3, 4) have been conducted
during the past decade concerning the definition of such a stage and its program. The
scope of these investigations have included a wide variety of system-level issues dealing
with reusability, the type of propulsion to be used, benefits of aeroassist, ground- and

space-basing, and impact of the launch system.

1.2 OBJECTIVES AND ISSUES
The overall objective of this study was to re-examine many of these same issues

but within the framework of the most recent projections in technology readiness,
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realization that a space station is a firm national commitment, and a refinement in

mission projections out to 2010.
During the nineteen-month technical effort the specific issues addressed were:

a. What are the driving missions?

b. What are the preferred space-based OTV characteristies in terms of propulsion,
aeroassist, staging, and operability features?

c. What are the preferred ground-based OTV characteristics in terms of delivery
mode, aeroassist, and ability to satisfy the most demanding missions?

d. How extensive are the orbital support systems in terms of propellant logistics and
space station accommodations?

e. Where should the OTV be based?
How cost effective is a reusable OTV program?

g. What are the implications of using advanced launch vehicles?

1.3 STUDY AND REPORT ORGANIZATION

Accomplishment of the objectives and investigation of the issues was done
considering two basic combinations of mission models and launch systems. Phase |
concerned itself with a mission model having 145 OTV flights during the 1995-2010
timeframe (Revision 8 OTV mission model) and relied solely on the Space Shuttle for
launching. Phase 2 considered a more ambitious model (Rev. 9) having 442 flights during
the same time frame as well as use of a large unmanned cargo launch vehicle and an
advanced Space Shuttle (STS II).

The study is reported in nine separate volumes. Volume I presents an overview of
the results and findings for the entire study. Volume II through VIII contains material
associated only with the Phase I activity. Volume IX presents material unique to the
Phase II activity. Phase I involved five quarters of the technical effort and one quarter

was associated with the Phase II analyses.

1.4 DOCUMENT CONTENT

This specific document reports the work associated with the systems analysis of
the OTV, configurations, subsystems, and supporting technical areas. The key program
groundrules influencing the analysis of these areas include use of the Rev 8 mission
model involving 145 OTV flights beginning in 1994 and ending in 2010 and an STS launch
system emphasizing 72K lbm capability and sensitivity to 65K lbm. In general, the

trades, studies, and analyses that are discussed deal with each of these topics on an
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individual basis. System level analysis dealing with multiple discipline trades are

discussed in Volume III.

Unless otherwise stated, the units used in this document, and to be assumed if

none are given, are as follows:

Length - feet or inches

Weight - pounds mass (lbm)

Force - pounds force (1bf)

Thrust - pounds force (1bf)
Temperature - degrees fahrenheit (°F)
Heating Rate - BTU/ft2 sec
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2.0 CONFIGURATIONS

This section presents a chronological history of each of the OTV configurations

developed during this study.

2.1 TOP LEVEL REQUIREMENTS
Table 2.1-1 shows the top level requirements used to guide the configuration
definition of the OTVs.

2.2 SPACE BASED OTV'S

This section discusses the configuration activity associated with the development
of a ballute brake OTV, symmetrical lifting brake OTV, and shaped brake OTV. All
concepts are based at a Space Station which is in a 270 nmi/28%° orbit. Servicing of the
vehicle at the station includes maintenance, refueling, and payload integration.

The following subsections present the vehicle reference configurations and,
chronologically, the trades and analyses performed to refine the configurations and

finally a description of the selected baseline vehicle.
2.2.1 Space Based Ballute Braked OTV

2.2.1.1 Initial Reference Configuration

Figure 2.2.1-1 shows the initial reference configuration for the ballute braked
Shuttle eargo bay (SCB) compatible OTV. The configuration was based upon our AOTV
study which was ongoing at the start of this study.

Main propulsion is provided by two 6000 Ib thrust advanced expander cycle
engines. Two engines were selected to provide engine out capability for manned
missions. Disconnect plates have been provided for the engines allowing them to be
replaced on orbit.

The aerobrake is a 50 foot diameter, 60 degree half angle, 600 degree F backwall
temperature ballute. The ballute was reusable. Subsequent analyses resulted in
switching to a ballute concept that is used only once.

The LO2 and LH2 tanks have hemispherical domes to minimize the weight of the
tanks. Both tanks have conformal meteoroid/debris shield as shown in figure 2.2.1-2;
however, the section of shield covering the eylindrical section of the LH2 tank (dashed

lines in figure 2.2.1-2) is deployable to a standoff distance of 6 inches. This permitted
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the LH2 tank to be 170 inches in diameter while optimizing the weight of the shield.
The LO2 tank is located aft because its smaller diameter integrates well with the engine
thrust structure and allows room for ballute stowage. Graphite/epoxy tubes with
aluminum end fittings connect the tanks to the rest of the vehiele's primary structure.
Support of the tanks in this manner minimized heat conduction into the tanks and helps
control propellant boiloff losses. The use of a truss tube system to support the
cryogenic tankage is used for all concepts of this study. The space based OTV will be
initially transported to space empty. Since this results in low structural loads, the tank
walls can be used as primary structure rather than having to have a structural shell
around the tankage.

Figure 2.2.1-3 shows the systems module located on the forward end of the
vehicle. The systems module houses the avionics, electrical power system, reaction
control system, and payload interfaces. A 30 inch deep octagon structure was selected
for the systems module based on an estimate of the total area required for the
equipment and because it provides flat interface surfaces for the avionies. Flat
surfaces simplifies the désign of the doors and avionie support structure. Space
maintenance provisions have been provided for the IRU, GPS, transponder, RF power
amplifiers, and DMUs. The fuel cells are also replaceable on orbit. The RCS is a
hydrazine system with 4 thruster modules which are installed and maintainable on orbit.
Installation of the thruster modules on orbit allow them to be stood off from the vehicle
body to reduce contamination and heating effects. The systems module is located at the
forward end of the vehicle to minimize the view factor of the avionies radiators to the
hot ballute during and after the aeromaneuver, keeps the RCS thrusters away from the
deflated ballute, and provides both top and side access to the equipment for removal and
installation.

Figure 2.2.1-2 shows a top level weight statement for this configuration.

2.2.1.2 Major Trades and Analyses on Initial Reference Concept

The following five top level trades and analyses were performed off this reference
configuration; 1) ballute sizing analysis, 2) systems module location trade, 3) tankage
shape trade, 4) engine type and sizing trade, and 5) reliability analysis. The first three
trades and analyses are presented below. The engine type and sizing trade is presented
in section 4.0 and the reliability analysis is presented in section 11.0. The engine sizing
trade resulted in changing to 5000 lb thrust engines, and the engine selection trade

verified continued use of advanced expander cycle engines. The reliability analysis

11
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indicated that life ecycle cost savings would occur with redundancy in the avionies and

EPS equipment, RCS thrusters, and having a total of two main engines.

Ballute Sizing. Ballute diameter is affected by three controlling factors; 1) the
design heating limit of the ballute fabric, 2) the required turn-down ratio, and 3) the
required static stability control margin (ep-cg margin).

As discussed in the aerothermal documentation section 5.0, the fabric heating is a
function of the ballistic coefficient (W/CpA) of the vehicle during the aeromaneuver.
For a constant reentry weight, if the ballute diameter is increased the ballistic
coefficient and fabric peak temperature decrease. The design heating limit of the
fabric, therefore, can be expressed approximately as a fixed ballistic coefficient. The
ballute diameter must be sized to yield a ballistic coefficient less than this heating limit
coefficient.

Ballute turn-down is accomplished by varying the internal pressure of the ballute
during the aeromaneuver. As the pressure decreases, the CDA of the ballute decreases
and the ballistic coefficient increases. Varying the CpA allows drag control and,
thereby, delta-V control during the aeromaneuver. The maximum turn-down ratio
((CDA)max/(CpA)min) is limited; however, by the physical characteristics of the
ballute.

The third diameter controlling factor is the static stability control margin or the
distance between the center of pressure of the ballute at the maximum turned-down
position and the center of gravity of the total vehicle and payload. A positive static
margin is necessary because the aerodynamic moments are large relative to the RCS
moments. The aerodynamic moment for a one degree change in angle of attack with a
static margin of 5% of the length of the ballute is as large as 1070 ft-lb, as compared
with an RCS moment of only 445 ft-1b. The aero stability limits usually size the ballute
diameter. Since the ballute weight increases by the square of its diameter, a vehicle aft
cg placement becomes important to reduce ballute diameter and; therefore, weight.
The desirability of an aft cg during the aeromaneuver supports the aft placement of the
LO2 tank.

In summary, ballute sizing is dependent on vehicle dimensions and center-of-
gravity for a desired backwall temperature (1500°F) and turn-down ratio range. The SB
ballute braked OTV resulting from our optimization studies for a stage diameter of 14.5
ft, a length of 35.2 ft, and a start burn weight of 74,140 lbs when sized for a GEO man

sortie mission has a diameter of 50 ft. The aerobreaking provisions include a ballute

13
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with a 1500°F backwall temperature and a turn-down ratio of 1.5 (max/min ratio of
CpA).

Systems Module Location. To investigate the effects of moving the cg aft, a trade
was performed on placing the systems module between the fuel and oxidizer tanks
rather than forward on the vehicle. Figure 2.2.1-4 shows the reduction in ballute
diameter and weight for a given usable propellant load. Mid body placement of the
systems module was selected as a reference configuration concept for both the space
based and ground based ballute braked vehicles based on this data.

Tank Shape. Alternate tank shapes were also investigated as a means of moving
the vehicle cg aft. Figure 2.2.1-5 shows vehicle configurations with 0.707 elliptical
domed LO2/LH2 tankage and a toroidal LO2 tank with a 0.707 elliptical domed LH2 tank
used for this trade. Figure 2.2.1-6 shows the length and weight trends. Although the
toroidal tank yields the smallest ballute diameter due to its short length, the tank itself
increased in weight more than the ballute weight savings resulting in a higher vehicle
inert weight than the elliptical domed tank vehicle. This data resulted in the selection
of 0.707 elliptical domed tanks for both the space based and the ground based vehicles.
Figure 2.2.1-7 shows the effect of the systems module placement and tank shape trade

on the ballute sizing.

2.2.1.3 Revised Reference Configuration
Figure 2.2.1-8 shows the revised reference vehicle configuration resulting from

the above trades and analyses.

2.2.1.4 Trades and Analyses on Revised Reference Configuration
Using the revised reference configuration further trades and analyses were

conducted on the ballute, RCS, avionics and EPS, TPS, and meteoroid/debris protection.

Ballute. Ballute configuration trades regarding thermal protection, drag control
and shape are presented in sections 5, 6, and 10 respectively of this document. These
trades resulted in changing to a 70 degree half angle, 1500 degree F backwall
temperature ballute which is jettisoned after each mission. Furthermore, the ballute
has a turn down ratio (TDR) of 1.5 with a forward to aft attachment point distance of at
least half the ballute radius. A detailed design of the ballute installation and jettisoning

provisions is given below. The vehicle is originally transported to orbit empty and

14
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without a ballute allowing ASE to be temporarily attached to the engine primary
structure. ASE is also attached via the payload interface to complete the support of the

vehicle for transport.

RCS. The RCS has been moved forward for three reasons; 1) eliminate thrusters
heating avionic radiators, 2) eliminate contamination of avionic radiators, 3) reduce

plume impact on ballute jettisoning, and 4) increase area for avionies in ring.

EPS Radiator. The EPS and avionic radiators were sized using nominal earth
infrared, albedo and solar radiation heating on a vehicle performing a thermal roll. The
EPS radiator is located adjacent to the avionies to allow assembly and checkout as a
unit before integration into the vehicle. The EPS radiator is shown facetted since it

conforms to the primary strut structure to which it is attached.

TPS. The 1500 degree ballute requires insulation external to the meteoroid/debris
shield. Since the EPS and avionies' radiators cannot be insulated, the backwall of the
ballute is insulated in this area to reduce the heat transfer; however, this insulation by
itself will not keep the avionics below their desigh temperatures. As a reference
concept, we have used phase change materiel (myrietic acid, a salt that melts at 136°F)

around critical avionics to keep temperatures within limits.

Meteoroid/Debris Shielding. Figure 2.2.1-9 shows the results of a trade comparing
meteoroid/debris shielding conformal to the tank dome heads versus shielding placed
along the vehicle body lines. Placing the shield along the body lines and using the EPS
radiator and avionies ring as part of the shield yields the least added shield area and;
therefore, the least weight. Integrating the EPS radiator and avionies ring with the
shield and considering the primary load path of the mid body avionies ring allows
elimination of the box structure enclosing the avionies as in the systems module design.
Furthermore, meteoroid/debris shield analysis presented in section 3.0 resulted in
changing to a 3 inch standoff distance over the LH2 tank's cylindrical section and the
elimination of the deployed shield. The tank was resized using a 3 inch static and

dynamic clearance to a maximum diameter of 168 inches.
2.2.1.5 Selected Space Based Ballute OTV Configuration

Figure 2.2.1-10 shows the final configuration of the space based, ballute braked
OTV. Table 2.2.1-1 shows a synopsis of the design features of this configuration.
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Major Elements. Figure 2.2.1-11 shows three major structural elements which are
removable via EVA. The ballute is installed and jettisoned after each flight. The heat
shield structure is removed only when a main engine must be replaced. Removal
provides the EVA astronaut access to the engine interface since the nozzle doors are not
large enough to admit an EVA astronaut.

Figure 2.2.1-12 shows our actuator and linkage design concept for opening the
nozzle doors on the heat shield support structure. The doors open almost 180 degrees to
reduce peak temperatures in the doors due to the engine radiation and recirculation
environment. The door TPS closures are envisioned to be similar to the umbilical or

gear door closures used on the Shuttle.

Ballute Attachment. Our reference design uses three marman type clamp bands to
secure the ballute and heat shield to the vehicle core. The ballute clamp bands are
automatically latched while the heat shield band is manually latched. Automatic
latching could be pneumatic (as shown) or electrically driven.

The major hardware for the installation and jettisoning of the ballute is shown in
figure 2.2.1-13. The system is designed to ease EVA installation of the ballute, keep the
chance of damaging the tiles on the heat shield to a minimum during installation and
assure jettisoning of the ballute after use. A structural assembly supports the ballute
itself during transport and installation. The ASE used to transport the ballute to the
Space Station and the fixture used to support the ballute at the station attaches to the
marman clamp interface on the ballute support structure. During installation, rollers on
the ballute structure engage guide tracks on the heat shield. The tracks are funnel
shaped at the ends so the ballute only needs to be grossly positioned initially. As the
ballute is drawn onto the tracks by the shuttle mechanism, the narrowing tracks
precisely position the ballute.

The ballute installation sequence is shown in figure 2.2.1-14. The shuttle
mechanism/spool system is used to winch the ballute onto the vehicle. After the second
set of rollers is engaged, the tool used to initially position the ballute can be removed.
After the ballute has been seated and clamped, the temporary transport corset is
manually removed to free the end of the ballute which must be threaded under the
forward attachment clamp. The clamp is then partially closed, the ballute edge bead is
seated against the clamp and the clamp is fully closed finishing the installation.

Ballute inflation occurs just prior to the aeromaneuver. Jettisoning the main

corset initiates the inflation sequence. Figure 2.2.1-15 shows the main corset
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jettisoning procedure. The corset is installed in segments held together by daisy chain
closures. The final daisy chain loop is suspended between standoffs on the ballute
support structure. Upon installation, the final loop is automatically properly positioned
over a rotating knife assemble. To jettison the ballute, the knife assembly severs the
final loop allowing the daisy chain to unchain and the corset is stripped away by the
inflating ballute.

The ballute is inflated with GN2 before and during the aeromaneuver and
therefore, provides the means for controlling drag. Figure 2.2.1-16 shows the ballute
shape at several points in the aeromaneuver. Modulation of ‘the internal pressure
controls the location of the center of pressure (ep) of the ballute from fully inflated to a
1.5 turned down shape. A 5 percent stability margin between the ep of the turned down
ballute and the cg of the vehicle sizes the ballute as shown in figure 2.2.1-17. The
limits shown correspond to the ballute sizing factors discussed earlier. The 1.5 turn-
down limit line in this figure shows that a 33 ft diameter ballute is the smallest ballute
which can be attached to the 126 inch diameter aft attachment interface and still have
a turn down ratio of 1.5.

After the aeromaneuver is complete, the ballute forms into a torus shape from
internal pressure loads. The hot ballute is jettisoned as soon as possible to minimize its
thermal impact on the vehicle. Jettisoning of the ballute is the opposite of the
installation and is shown in figure 2.2.1-18. The shuttle mechanism/spool system
winches the ballute off the vehicle while the RCS thrusters move the vehicle away from
the ballute. Tapes connecting the forward edge of the ballute to its support structure

ensure that the forward edge is pulled from under the open marmon clamp band.

Avionies Placement. An initial layout of the avionics installation is shown in
figure 2.2.1-19. Equipment associated with particular subsystems have been located
together. The first four bays and part of the fifth are dedicated to the electrical power
subsystem. The fifth and sixth bays contain the TT&C subsystem. The seventh and part
of the eighth contain the GN&C subsystem and the main propulsion subsystem occupies
the remainder of the bay. Provisions for the equipment needed to man-rate the vehicle
are initially installed; however, the avionics themselves are only installed the manned
flights. |

The GN2 bottles required for main engine seal purge and ballute inflation are
located behind the EPS radiators.
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Weights. Figure 2.2.1-20 shows a top level weight summary for the manned sortie
mission of the space based, ballute braked vehicle. The subsystems are man-rated.
Included in structures are body and stiffening ring structures, thrust structure, equip-
ment support structure, tankage and tankage support structure, as well as all structure
associated with the ballute, both jettisonable and non-jettisonable. Propulsion systems
include both main propulsion and reaction control systems. Thermal control and
protection includes tank insulation, and active thermal protection during the
aeromaneuver. Other systems are shown. Space maintenance provisions includes all
structural and mechanical provisions to remove/replace selected vehicle components.

Weight growth includes 5% of existing hardware weight and 15% on all other weights.

Center of Gravity. Figure 2.2.1-21 shows the c¢g movement for the 20k delivery
missions and 7.5k manned roundtrip mission. The 20k mission establishes the engine
gimbal angle requirement of 21 degrees. This angle provides 4 degrees of control
authority if an engine were to fail shortly after the payload was delivered. The manned
mission establishes the ballute diameter via the aerodynamic stability margin
requirement. The relationship between the aerodynamic center and the cg for this

mission is shown.

Weight Trending. For the above chronological history of configurations, figure
2.2.1-22 shows how the weights changed as the configurations changed. Table 2.2.1-2

presents a breakdown of the weight changes.

2.2.1.6 Configuration for Drag Modulation Trade

A system level trade was performed between configurations using ballute
turndown for drag control as discussed above versus engine exhaust modulation. The
complete trade is discussed in Volume IIl and thermal protection inputs are addressed in
Section 5.0 of this document. Figure 2.2.1-23 shows the engine drag modulation vehicle
configuration used in the trade. Besides drag modulation, the engine exhaust is also
used to cool the boundary layer of the ballute resulting in a lower FSI weight.

The weight changes from the space based OTV with a 600 degree backwall
temperature ballute using turndown are shown in table 2.2.1-3. Although the engine
modulated vehicle has a structural weight savings, this savings is offset by the addition
of main propellant and ballute pressurant required for the aeromaneuver. Additional

pressurant is required to maintain the ballute at its nominal profile throughout the
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maneuver. Shortening the heat shield length changes the cg of the vehicle permitting a

smaller ballute. The net weight savings results from this smaller ballute sizing.

2.2.2 Space Based Symmetrical Lifting Brake OTV

2.2.2.1 Initial Reference Configuration - Articulated Brake

The lifting brake OTVs discussed in this section are transported to orbit in the
Shuttle payload bay. Figure 2.2.2-1 shows our initial reference configuration. The
lifting brake is articulated so the angle of attack and lift vector direction can be
modified during the aeromaneuver to compensate for cg changes from flight to flight
and to control the flight direction. Articulating the brake to one side shifts the vehicle
cg off the brake centerline causing the vehiele to stabilize at an angle of attack. Flying
the brake at an angle of attack produces lift. Controlling the lift vector direction
allows the vehicle to be flown into or out of the atmosphere, that is, into denser air or
less dense air. Flying through differing air densities controls the amount of velocity
dissipated via the aeromaneuver.

The vehicle core consisting of the tankage, engines, and systems module was
derived from the space based ballute braked vehicle. The core is an efficient design for
carrying the predominately axial loads of the brake while minimizing the number of
tanks and providing a symmetric interface for the articulated brake. Due to the fact
that both together exceed the payload bay volumetric capability, the core and the brake
are transported to orbit on different Shuttle flights and are integrated on orbit.

Figure 2.2.2-1 also shows a top level weight summary of the initial configuration.

2.2.2.2 Revised Reference Configuration

Further definition and a structural analysis (see section 3.0) of the articulated
brake were performed resulting in the configuration shown in figure 2.2.2-2. The RCS
thrusters were relocated forward to reduce impingment on the brake and associated loss
of thrust. The brake is launched in a collapsed condition as shown. When expanded and
mated with the core it is attached by bearings at the apex of the support quadrants and
two actuators at 90 degrees to the supports. A deep cylindrical section with a heavy
ring at the base collects the drag loads from the ribs and rib support struts and delivers
it to the support quadrants and actuators. The relatively shallow angle and small rib
attachment radius of the rib support struts results in a heavy brake framework as shown

in table 2.2.2-1. When the TPS, support structures, and support mechanisms are added
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to the framework the aeroassist device accounts for 25 percent of the total vehicle dry

weight.
2.2.2.3 Trades and Analyses

Fixed Brake. Recognizing the dominant role of the brake weight in the vehicle
sizing, we investigated an alternative fixed brake design. Figure 2.2.2-3 shows the fixed
brake configuration. The vehicle core is angled relative to the brake to offset the cg
causing the brake to fly at an angle of attack during the aeromaneuver. Pointing of the
lift vector of the brake is accomplished by rolling the vehicle about its longitudinal axis.
Since the brake does not gimbal, the rib struts can be attached directly to the vehicle
core. Attaching the struts to the aft edge of the systems module and moving the rib
interface outboard increases the efficiency of the strut system and reduces the bending

loads in the ribs. Table 2.2.2-2 shows the reduced weight of this brake system.

Wake Heating. Thermal analysis of both of these configurations indicates severe
wake heating problems as discussed in section 5.0. The entire return payload and a
portion of the hydrogen tanks are subject to wake impingement. The severity of the
wake heating resulted in the adoption of a design ground rule of no return payload wake
heating. This ground rule combined with a nominal 22 degree wake heating boundary
eliminated the two tank in-line configurations from further consideration and caused us

to investigate multi-tank concepts.

Four Tank Concept. This concept was derived from our ACC configurations and is
shown in figure 2.2.2-4. The LO2 tanks, LH2 tanks, brake and avionics ring/core
structure are transported individually in the Shuttle bay and are assembled together on
orbit. This configuration incurs weight, risk and cost penalties due to the amount of
required on orbit assembly. Weight penalties include interface points to ASE for
transport, EVA or RMS handling fixtures, and EVA mate/demate structural and
electrical joints. The complexity of EVA, Quality Assurance, and the limited resources
available if an error occurs increases the cost risk of a vehicle which is extensively
assembled on orbit. Cost increases include astronaut training, EVA directly incurred
costs, and increased checkout and leak detection required since major components of
the MPS have to be assembled. A four tank configuration incurs a weight penalty
relative to a three or two tank arrangement due to increased surface area which needs

to be insulated and protected from meteoroids and debris. This configuration also incurs
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the burden of having to be extensively disassembled for return to earth if a problem

occurs which is not space repairable.

Three Tank Concept. Figure 2.2.2-5 shows tank configuration options which were
explored for the lifting brake OTV. The tanks have been located transverse to the roll
axis of the brake so the return payloads will not be subjected to wake impingement
heating. Likewise, the brake is sized in diameter to prevent wake impingement heating
on the tanks or the engines.

Besides wake heating, the aeromaneuver's L/D requirement drives the location and
arrangement of the tanks. L/D results from flying the brake at an angle of attack which,
in turn, is obtained by eg offset. As discussed in section 6.0, an aeroguidance trade
study was performed for 10, 20, and 30 degree angles of attack to determine which
resulted in the least weight system. The trade favored 10 degrees. A low angle of
attack is also favorable from a configuration standpoint because of the conflicting
requirements of cg offset verses no wake impingement heating. As the tanks are moved
forward to increase the eg offset and, thereby, increase angle of attack, the angle
between the brake and the wake impingement boundary line increases (22 degrees +
angle of attack) forcing the tanks back. As a result, a 10 degree angle of attack was
selected as a design requirement.

Five major elements whose cg position control the angle of attack are the; 1)
lifting brake, 2) tankset, 3) engines, 4) propellant, and 5) return payload. The lifting
brake, tankset, engines, and residual propellant cg positions combine to form an inert
weight cg position which varies very little from flight to flight. For any OTV
configuration to trim at a desired angle of attack, the tankset and engine positions must
be juggled relative to the brake to locate the inert weight cg along the angle of attack
trim line. On the other hand, the reserve propellent and return payload are masses that
have large variations from flight to flight and have a large influence on the system cg.
As a result, the reserve propellant and payload cg positions must individually be located
on the angle of attack trim line so the system cg position will track the trim line despite
their variations. Unfortunately, it is impossible to eliminate all sources of eg error or
variation; however, their influence on the vehicle's angle of attack reduces as the cg
moves closer to the nose of the brake. For example, 8 feet behind the brake the angle
of attack changes 0.95 degrees per inch of eg error, whereas at 20 feet, 1.85
degrees/inch will occur. Therefore, a configuration which positions the vehicle and

payload cgs close to the brake is desirable.
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Based upon the aforementioned configuration guidelines, the multi-tank configura-

tions shown in figure 2.2.2-5 can be evaluated and a reference configuration selected.

2.2.2.4 Selected Baseline Configuration

Figures 2.2.2-6 and 2.2.2-7 show our baseline space based lifting brake OTV
employing 3 tanks. Relative to the four tank configuration, on orbit assembly costs and
risks have been mitigated by making the tanks, propellant manifolds, avionics, EPS,
RCS, engine interfaces,' and payload interface one integral unit which is brought to orbit
in the Orbiter PLB. Table 2.2.2-3 shows the key configuration features of the OTV

concept.

Major Elements. Figure 2.2.2-8 shows the major elements which are individually
transported in the Shuttle bay and are assembled on orbit. The TPS for the brake is
transported separate from the collapsed brake structure to avoid damaging the fabric
and allow for the installation of ASE on the brake structure.

When a main engine or the brake TPS has to be replaced on orbit‘ the brake must
be removed to provide the EVA astronaut access to the engine or TPS interface. A
simple four point interface is maintained between the tankset and the brake to

facilitate brake removal/reinstallation.

Brake Structural Configuration. The brake's basic form is a blunted 70 degree half
angle cone as shown in figure 2.2.2-7 (see figure 2.2.2-11 for views and sections). An 87
inch radius hardshell dome covered with RSI forms the center of the brake. Doors are
located in the dome for engine nozzle deployment. Ribs attach to a ring on the dome
and support the fabric TPS covering. The ribs fold up for transport in the Orbiter bay.
A triangular strut system transfers the brake loads to the tankset. One set of struts
connects the dome to the tankset and another connects the ribs to the tankset. The rib
struts minimize the bending loads in the ribs therefore allowing the ribs to be relatively
light sections.

Besides the strut system which transfers the brake loads to the tankset, a strut
system exists which transfers loads between the ribs as shown in figure 2.2.2-9. These
struts laterally stabilize the ribs, prevent "racking" of the ribs during roll maneuvers,

and transfer the rib strut kick loads between ribs.

Brake TPS. Figure 2.2.2-10 shows the flexible TPS assembly for the lifting brake.

The TPS is designed to be installed with the brake structure assembled. The inner edge
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of the fabric is secured by a structural ring which is part of the TPS assembly. This ring
fits concentrically to the dome of the brake and dome fasteners are used to secure it.
This avoids having fasteners penetrate the RSI on the ring. Radial straps are sewn to
the Kevlar base cloth corresponding to the rib locations. They are wound onto spools to

tension the blanket.

Tankset. The tankset consists of the tanks, propellant manifolds, avionics, EPS,
RCS, and engine, brake and payload interfaces. As shown in figure 2.2.2-9, the tankset is
offset from the center of the brake so the vehicle will trim to a 10 degree angle of
attack during the aeromaneuver.

A bi-pod strut system interconnects the LO2 tank with the two LH2 tanks. There
are eight avionic bays located between the LO2 and LH2 tanks similar to the space
based ballute configuration discussed earlier. The bays and EPS radiator are identical in
configuration as the ballute vehicle's design (reference figure 2.2.1-19); however, they
have been located to minimize their view factor to the payload while maintaining a high
view factor to space. Meteoroid/debris protection again parallels the ballute design
with a 3 inech stand off shield conformal to the body lines integrated with the EPS
radiators and equipment bays.

A four point interface connects the tankset to the lifting brake. Section BB of
figure 2.2.2-11 shows the primary structure which transfers the engine and brake loads
to the payload interface, the tank support strut connection points, and the avionic bays.
This integrated engine and brake primary structure design provides a very efficient
structural design despite the cantelevered design of the LH2 tanks. Placing the tanks
perpendicular to the engine and brake load directions does not impose a weight penalty
on the vehicle because of the high moment of inertia due to the large diameter of the
vehicle and the light structural loads.

View AA in figure 2.2.2-11 taken from the side view of the lifting brake shows the
RCS thruster clusters on the ends of the tankset. 150 lb roll thrusters are required to
achieve a roll rate of 5 degrees per second squared. This roll rate is required to change
the lift direction during the aeromaneuver so the guidance system can fly out
atmospheric dispersion errors. The roll thrusters can also provide pitch authority except
when the cg lies in their thrust plane. Forward pointing pitch thruster weré added for
this contingency although they present a potential payload contamination and heating
problem; however, a payload has to be very large in diameter for this to occur. The

forward pointing pitch thrusters are generally more efficient for pitch and yaw control
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than the roll and yaw thrusters and could be used extensively on missions whose payloads

are insensitive to their effects.

Brake Sizing. Figure 2.2.2-12 shows how the brake diameter is constrained. The
heating line is developed from TPS temperature limits discussed in section 5. The other
two lines show trending lines for a horizontal tankset with a circular brake. Ellipsoidal
domes are used on the tanks to minimize the brake diameter. As the reentry weight
increases due to increased propellant loads the tankset length increases requiring a
larger brake to protect the tanks. Our configuration is sized by the manned sortie

mission reentry weight and the heating limit curve.

Weights. A weight summary for the final lifting brake OTV configured for a
manned sortie mission was shown in figure 2.2.2-6. All subsystems are man-rated. The
summary contains the same elements as the ballute braked OTV discussed previously. In
this case the lifting brake primary and secondary support structure as well as the
flexible membrane are included in structures weights. Insulation on the face of the

brake is included in thermal control and protection.

Center of Gravity. Figure 2.2.2-13 shows the cg movement for the 20k delivery
missions and 7.5k roundtrip manned missions. The cg position for the final
circularization burn after the aeromaneuver sets the engine gimbal angle requirement of
34 degrees. This angle provides 4 degrees of control authority if an engine were to fail.
The high gimbal angle results from the low cg position designed to reduce the vehicle's
angle of attack sensitivity to eg position errors. Accommodating this large gimbal angle

is not possible with the current brake dome design due to diameter limitations.

Weight Trending. For the above chronological history of lifting brake configura-
tions, figure 2.2.2-14 shows how the weights changed as the configurations changed.

Table 2.2.2-4 presents a breakdown of the weight changes.

2.2.2.5 Revised Baseline Configuration

Further assessment of the symmetric lifting brake OTV was done in conjunction
with refinement activity for the GB ACC OTV lifting brake. This analysis focused an
update of the brake rib structure, and the brake thermal protection system. The weight
~improvement in these subsystems led to a performance improvement for the vehicle

overall.
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The twenty-four deployable ribs in the symmetric brake can be tailored to the
moment distribution along the rib in order to minimize weight. With this type of
tailoring, as shown in figure 2.2.2-15, a weight savings of about 160 lb can be achieved.
Also, the inter-rib support can be tension-only straps instead of tension/compression
struts, as was designed originally. Use of straps instead of struts saves 260 lb.

In the area of TPS, the fabric assembly weight was updated, using an integrally
woven assembly that includes both support fabric of NEXTEL and surface fabric of
NICALON, rather than the original concept of an all-NICALON assembly supported by a
KEVLAR cloth. This change resulted in a weight savings of 90 lb. Updated TPS
insulation thickness resulted in a weight savings of 240 Ib.

Overall, these updates resulted in weight savings of 860 Ib., including weight
growth of 110 Ib. In terms of performance, this reduced the propellant requirement for
performing the 20K lb delivery mission to GEO from 69,681 lb to 65,180 Ib of LO2/LH2.

The results of this analysis are shown in figure 2.2.2-16.

2.2.3 Space Based Shaped Brake OTV

2.2.3.1 Initial Reference Configuration

The shaped brake OTVs discussed in this section are transported to orbit in the
Shuttle payload bay. Figure 2.2.3-1 shows our initial reference configuration. The
brake's shape, tankage and engine arrangement were based upon the Johnson Space
Center configuration in NASA TM 58264.

The shaped brake is a blunted raked elliptical cone hardshell thermally protected
by RSI. The brake diameter is affected by the same controlling factors as the
symmetrie lifting brake OTV, that is, protecting the tanks, engines and return payload
from wake impingement heating and the TPS material heating limit. For the shaped
brake, wake impingement tends to be the controlling constraint. The base of the cone
(in the rake plane) is circular to allow packaging of the tanks and engines.

Once on orbit three LH2 tanks, one LO2 tank, the engines, and the avionics
systems module are integrated to the brake via a structural truss system. The avionics
systems module is identical to that used in the initial space based ballute braked OTV.
Use of four tanks permits efficient packaging into a circular brake and good inert
weight eg trim for the aeromaneuver. Each integrated element provides its own
thermal protection system and meteoroid/debris shielding.

The structural design concept for this configuration is described in section 3.0.

Basically, the inertia loads of the tanks and equipment are transferred via the strut
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system to the brake periphery during the aeromaneuver. This causes the brake's
hardshell to go into compression similar to squeezing an egg shell. Utilizing the doubly
curved surface of the brake for overall stability allows the brake to be designed as a
monocoque structure.

Control of the shaped brake during the aeromaneuver is the same as the fixed
lifting brake OTV discussed above. Rolling the vehicle changes the lift vector direction
allowing flight into or out of the atmosphere. The brake is flown at a 17 degree angle of
attack relative to the base of the brake yielding an L/D of 0.275.

2.2.3.2 Revised Reference Configuration

Two successive design and analysis iterations were performed to establish a new
reference configuration shown in figure 2.2.3-2. The primary changes for the first
iteration include changing the structural design and updating the brake's RSI weights
based on a‘thermal analysis.

Local brake hardshell stability, deflection and load distribution concerns resulted
in the abandonment of the 'egg shell' structural design concept for a cruciform keel
beam/bulkhead system. The cruciform concept uses keel beams and bulkheads to
stabilize the shell structure and distribute loads to the tanks and equipment. The keel
beams and bulkheads are deep webbed structures sized for deflection rather than
strength. Deflections are limited by strain compatibility between the shell and the RSI
tiles.

The primary changes for the second iteration include decreasing the tank sizing,
improving the structural definition, and changing to advanced engines. Using advanced
engines reduces the weight of the engines as well as the tank size due to improved
performance. Section 4.0 presents the engine trades in depth. Further structural
analysis resulted in an improved structural definition with a reduction in weight. This
weight decrease also caused the tank size to decrease.

Figure 2.2.3-3 shows the major elements of the updated reference configuration

and figure 2.2.3-4 shows a top level weight summary.
2.2.3.3 Trades and Analyses
The following trades and analyses were performed against the revised reference

configuration.

Angle of Attack. As discussed in section 6.0, an aeroguidance trade study was

performed for 10, 20, and 30 degree angles of attack to determine which resulted in the
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Figure 2.2.3-3 Shaped Brake OTV Major Elements
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least weight system. The trade favored 10 degrees. The configuration implications of
angle of attack for the shaped brake is the same as for the lifting brake and is discussed
in section 2.2.2.4. A 10 degree angle of attack was selected as a design requirement

based on this trade.

Tank Configurations. The reference configuration incurs weight, risk and cost
penalties due to the amount of required on-orbit assembly. Weight penalties include
interface points to ASE for transport, EVA or RMS handling fixtures, and EVA
mate/demate structural and electrical joints. The complexity of EVA Quality Assurance
and the limited resources available if an error occurs increases the cost risk of a vehicle
which is extensively assembled on orbit. Cost increases include astronaut training, EVA
directly incurred costs, and increased checkout and leak detection required since major
components of the MPS have to be assembled. A four tank configuration incurs a weight
penalty relative to a three or two tank arrangement due to increased surface area which
needs to be insulated and protected from meteoroids and debris. This configuration also
incurs the burden of having to be extensively disassembled for return to earth if a
problem occurs which is not space repairable.

As a means of mitigating these on orbit assembly associated penalties,
configuration concepts that have the tanks, propellant manifolds, avionics, EPS, RCS,
engine interfaces, and payload interface as one integral unit were investigated. Figure
2.2.3-5 shows the tank configuration options that were explored. These configurations
are the same as those investigated for the lifting brake OTV except for the brake itself;
however, the selected concept changes because of this difference as discussed below.

The evaluation principals presented in section 2.2.2.4 for the lifting brake are also
applicable to the shaped brake options. To reiterate, the inert weight cg, reserve
propellent cg and payload cg positions need to fall along the angle of attack cg trim line
for a configuration to be viable. The desirability for the reserve propellant eg position
to fall along the trim line provides another reason for exploring alternative to the
reference configuration described above since it fails to have this characteristic. The
cg position is forward of the trim line due to the forward placement of the LO2 tank and
center LH2 tank and their forward inclination due to the angle of attack.

As previously mentioned, the shaped brake has a significant impact on the
preferred configuration. This is because the shaped brake's inert eg position is well
forward of the trim line. This forward cg can be balanced by locating the engines aft.
There are three advantages to this concept; (1) no brake removal is required for engine

access, (2) no nozzle doors are required in the hardshell, and (3) the engines can be
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brought to orbit integral with the tankset. As for the lifting brake concept, its brake cg
is along the center of the brake and cannot balance a set of engines located near the
edge of the brake. Therefore, the engines must be located under the tankset to achieve

an inert weight eg balance.

2.2.3.4 Final Baseline Configuration
Figure 2.2.3-6 shows our final space based shaped brake OTV. The vehicle is based
upon the results of the trades discussed above. Table 2.2.3-1 shows the key

configuration features of this vehicle.

Major Elements. The major components which are transported in the Orbiter bay
and are assembled on orbit are shown in figure 2.2.3-7. The brake is transported in
three sections. The center section is transported on one Shuttle flight while the two
side sections are transported overlapped on another shuttle flight. Removable jigs are
used to rotate the sides into position on the center section. This precludes premature
contact of the RSI. Shear cones are used to align the sections as they are rotated into

place. Structural fastener installation completes the assembly and the jigs are removed.

Brake Structural Configuration. The brake's basic form is derived from the initial
reference configuration described earlier. The brake has been scaled up in length and
down in width to form an elliptical base. The brake has been made elliptical to
accommodate the length of the tankset without increasing the area of the brake beyond
that required by a four tank updated reference configuration.

Figure 2.2.3-8 shows the brake's structural design. The brake is divided into three
12 foot sections as shown in section AA of the figure. The tankset is attached to the
brake keel beams located at the junéture of the sections via struts. Since the tankset is
the stiffest element of the assembly due to its high moment of inertia, it is used to
stiffen the brake. This eliminates the need for deep webbed keel beams and reduces the
brake weight. A composite sandwich shell is stiffened by a series of cross ribs. The
cross ribs are, in turn, stiffened by struts from the tankset. These struts allow the ribs
to be relatively light while still maintaining a brake stiffness compatible with the RSI
tile requirements. The net result of this design is a much lighter brake weight. Section

4.0 discusses this struetural concept and the member sizing in depth.

Tankset. The tankset consists of the tanks, propellant manifolds, avionies, EPS,

RCS, engines, and brake and payload interfaces. A side view of our configuration is
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shown in figure 2.2.3-9. The brake is maintained at a 10 degree nominal angle of attack
during the aeromaneuver by offsetting the cg of the vehicle. The location of the LO2
tank and the LH2 tank near the engines is critical to achieving a constant cg offset.
These are the two tanks which still have propellant in them during the aeromaneuver.
Since over 1200 lb of this propellant is reserves which may or may not be used on a
given flight, the eg of the propellent (always 1/7 the distance between the LO2 and the
LH2) must be located on the cg trim line. This is accomplished by designing the
cylindrical sections of the two LH2 tanks to properly place the LO2 tank between them.

From an inert eg standpoint, the forward cg of the brake helps offset the.aft cg of
the engines. The avionies location would be used to fine tune the cg position. The crew
module must be designed such that its cg is located on the trim line when it is on the
vehicle.

A bi-pod strut system interconnects the LO2 tank, the two LH2 tanks and the
cruciform engine support structure. The avionies, EPS radiators, RCS, payload inter-
faces, and meteoroid/debris protection are configured the same as for the lifting brake
OTV's final configuration. The primary structure which transfers the brake loads to the
return payload is shown in figure 2.2.3-8 section AA. Again, this structure is the same
configuration as that used in our lifting brake OTV concept since the loading conditions

and load paths are similar.

Brake Sizing. Figure 2.2.3-10 shows how the brake size is constrained. The
heating lines are developed from TPS temperature limits. The other two lines show how
the brake length must increase to prevent wake heating of the tankset as the tankset
length increases due to increased propellant loading. Our configuration is sized by the

tank length required to do the manned sortie mission.

Weights. A weight summary for the shaped brake OTV configured for a manned
sortie mission is shown in figure 2.2.3-6. All subsystems are man-rated. Elements for
each subsystem are the same as defined for the ballute braked OTV. In this case, the
shaped brake primary and secondary structure including support structure is included in
structures weights. Rigid tile insulation on the face of the brake is included in thermal

control and protection.
Center of Gravity. Figure 2.2.3-11 shows the cg movement for the 20k delivery

missions and 7.5k manned roundtrip mission. The "post burn number 2" cg position and

the "end of mission" cg position set the gimbal angle requirement of 34 degrees. This
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angle provides 4 degrees of control authority if an engine were to fail. If the payload cg
position was offset more than the assumed amount (1/3 length of the payload), the
gimbal angle would increase further. The location of the engines for this configuration
imposes limits on the tolerable gimbal angle resulting in payload eg limitations which a

configuration like the lifting brake (engines below tankset) does not have.

Weight Trending. For the above chronological history of shaped brake configura-
tions, figure 2.2.3-12 shows how the weights changed as the configurations changed.
Table 2.2.3-2 presents a breakdown of the weight changes.

2.3 PROPELLANT LOGISTICS SYSTEMS

This section deseribes the configuration effort to develop propellant logistics
systems necessary to support any of the SB OTV concepts. Propellant storage tanks are
located at the Space Station and tankers deliver propellant from the Earth launch

complex to the Station.

2.3.1 Propellant Storage Tanks

Figure 2.3.1-1 and figure 2.3.1-2 shows the LH2 and LO2 storage tanks,
respectively. The trades and analyses performed to establish the design and sizing of the
tanks are presented in section 3.0.

Both tanks share a common design and consist of a thin walled pressure vessel,
surrounded by two vapor cooled shields, surrounded by a structural shell which provides
meteoroid/debris protection. The shields and pressure vessel are supported by the shell
via straps to minimize heat conduction paths and; therefore, reduce boiloff. MLI
blankets are located between the shields to reduce radiant heat transfer and, again, to
reduce boiloff. Boiloff is a critical concern because of the long propellant storage time.

The pressure vessel is pressure stabilized with helium during transport to orbit.
Two ASE frames attach to the structural shell to transfer the tank loads to the Orbiter
and are used to support the tanks at the Space Station. The tanks are designed to be
launched independent of one another to allow multiple manifesting with heavier

payloads and to allow flexibility in their placement at the Station.

2.3.2 Propellant Delivery Tanker
To transport propellant to the Space Station in the Orbiter a tanker has been
configured and is shown in figure 2.3.2-1. Again, the trades and analyses which defined

the type of tanker desired are presented in section 3.0 and in volume II, book 4.
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The tanker consists of LH2 and LO2 isogrid tanks supported by two structural rings
via graphite/epoxy struts. Isogrid tanks are used to distribute the local strut loads into
the tank. Struts are used to minimize heat conduction and; therefore, propellant
boiloff. Surrounding each tank are MLI blankets and a purge enclosure. The purge
enclosure permits a helium purge of the system on the ground to avoid liquid nitrogen
from forming on the LH2 tank.

Helium bottles are located on the aft support ring and provide helium pressurant
for dumping the propellant during a launch abort condition.

Forward and aft structural support rings are located on either side of the LOZ2 tank
with the LH2 tank cantilevered from the forward ring. Since the forward ring also
supports the keel pin, this design locates the keel pin approximately at the cg of the
loaded tanker. This minimizes yaw coupling loads in the system and so reduces the
structural loads. Cantilevering the LH2 tank imposes little weight penalty because the

launch loads are predominately axial and landing always occurs with the tanks empty.
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2.4 GROUND BASED OTV'S

This section discusses the configuration effort associated with OTV's launched
within the shuttle cargo bay (SCB) or aft cargo carrier (ACC). Unless noted, the
vehicles and their payloads or auxiliary propellant tanks are launched using an STS with
72k lbm capability (study groundrule). As in the case of SB OTV's the discussion is

chronological in terms of configuration development.

2.4.1 Ground Based SCB Ballute Braked OTV
The GB SCB OTV concept consists of a main stage used on missions involving <12k
Ibm GEO delivery or equivalent and an auxiliary propellant tankset for more demanding

missions.

2.4.1.1 Operational Description for Main Stage OTV

The ground based main stage OTV is transported to orbit in the Shuttle SCB fully
fueled with a payload attached. On orbit, the OTV and payload are deployed and the
OTV performs its mission. Upon return to LEO, the ballute is jettisoned and the OTV is
restowed in the PLB for return to the ground. On the ground, the OTV is refurbished

with a new ballute and is manifested for another mission.

2.4.1.2 Initial Reference Configuration

Figure 2.4.1-1 shows our initial reference configuration and a top level weight
statement for the ground based ballute braked OTV. The configuration was based upon
the OTV Concept Definition Study NAS8-33532 (Ref. 1). The OTV structure consists of
an LH2 and LO2 tank, an external shell, avionies/RCS ring, engine support beams, and
an aft shell for ballute support. Main propulsion is provided by a single RL10-IIB engine.
Attitude control is provided by a blow-down hydrazine system with four thruster
modules mounted on the avionies ring.

Design of the structural system for this vehicle is dominated by the attached
payload cantelevered loads during ascent and abort conditions and the LOZ2 oxidizer
loads during ascent. Propellant loads are not a structural driver for Orbiter abort
landing conditions because the propellant is dumped overboard for safety and to meet
Orbiter landing load restrictions. An exterior graphite/epoxy sandwich shell is used to
gather the payload and LO2 tank loads and distribute them to the Orbiter interface
trunnions and keel pins. The shell also provides meteoroid/debris protection for the

vehicle.
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Both the LH2 and LO2 tanks are made of 2219-T87 aluminum and have elliptical
domes. Elliptical domes are used to reduce the vehicle length in the Orbiter bay so a
reasonable payload length is available. The tanks are attached to the shell via
graphite/epoxy struts.- Struts are used to minimize heat conduction to the tanks and,
thus, minimizes propellant boiloff losses.

The aerobrake is a 50 foot diameter, 60 dégree half angle, 600 degree F backwall
temperature ballute. The ballute is jettisoned after each flight so the OTV can be
restowed in the Orbiter. To facilitate ballute installation on the ground, the aft dome
and conical structure attached to the engine support structure can be removed.

The avionies ring is a 30 inch deep octagonal aluminum structure which supports
the avionies, EPS, and RCS. An octagon was selected because its flat surfaces simplify
the design of the doors and avionic support structure. No space maintenance provisions
have been provided for the avionies. The avionies ring is located between the LO2 and
LH2 tanks rather than on the forward end to reduce vehicle length so payload length is

maximized.

2.4.1.3 Major Trades and Analyses

The same five top level trades and analyses that were presented for the space
based ballute braked OTV in section 2.2.1.2 are applicable to the ground based OTV.
These trades and analyses are; 1) ballute sizing analysis, 2) systems module (avionies
ring) location trade, 3) tankage shape trade, 4) engine type and sizing trade, and $5)

reliability analysis.

2.4.1.4 Revised Reference Configuration
Figure 2.4.1-2 shows the main stage OTV configuration with the above trade
results incorporated. A separation plane has been added to the vehicle to accommodate

ASE attachment and a 5 degree clearance angle for deployment has been provided.

2.4.1.5 Revised Reference Configuration Refinement

From this reference configuration further trades and analyses were conducted on
the ballute, RCS, avionics and EPS, and TPS. Again, these trades and analyses are the
same as those presented for the space based ballute braked OTV in section 2.2.1.4.

The avionics ring and the EPS radiator were changed to cylindrical shapes rather
than octagonal or facetted. Both of these items carry large primary loads during launch
on the ground based vehicle making it undesirable to disturb the load path from the

circular shells to a facetted shape.
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2.4.1.6 Baseline Main Stage OTV Configuration

Figure 2.4.1-3 shows our final baseline configuration for the ground based ballute
braked OTV. Key configuration features are shown in table 2.4.1-1. The OTV is sized
for payloads of 12000 pounds or less. The larger payloads in the mission model utilize an
auxiliary tankset to increase the performance capability of the vehicle. The configura-

tion of the auxiliary tankset and their vehicle implications are discussed in section 2.2.7.

Ballute. The vehicle utilizes a 33 foot diameter, 70 degree half angle cone ballute
with a 1500 degree backwall temperature for the aeromaneuver. When an auxiliary
tankset is utilized, the tankset changes the eg of the vehicle significantly and requires a
larger ballute size. The forward and aft attachment points are spaced apart over half
the radius of the 33 foot diameter ballute. The ASE interface to the vehicle precludes a
larger spacing which would be desirable for the larger ballutes used with the auxiliary
tankset.

Ballute inflation, control and jettison are accomplished using the same provisions
and procedures as the space based ballute braked vehicle. Ballute installation, of

course, is done on the ground.

Ballute Sizing. The ballute diameter sizing constraints are shown in figure 2.4.1-4.
The manned sortie mission and low g GEO delivery mission are sized by the 5% static
stability margin as discussed for the space based ballute braked vehicle. The unmanned
multiple manifest mission corresponds to a 12k lb or less payload mission and is sized by
the 1.5 turn-down limit. This limit is the smallest 70 degree ballute with a 63 inch

forward attachment radius that will have a turn down ratio of 1.5.

ASE. An ASE has been designed to collect the axial loads and transfer them to the
Orbiter, tilt the OTV out of the payload bay, and support the avioniecs, manifolding, and
helium bottles needed to interface the OTV with the Orbiter. The helium bottles
provide pressurant for dumping the OTV propellents in 300 seconds for launch abort.
The ASE attaches to the OTV via a series of mechanical latches. A five degree
clearance angle has been provided between the ASE and the vehicle to accommodate
deployment.

Figure 2.4.1-5 shows how the OTV is installed in and deployed from the Orbiter
bay. The forward trunnion on the ASE transfers the 113K Ib x axial loads to the orbiter.

The placement of the vehicle is, therefore, constrained by the locations of 120 kip x
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load capability PRLAs (payload retention latch assembly) and the rotation clearance
required by the ASE. A payload length of 25 feet can be accommodated. The vehicle is
rotated 45 degrees for deployment via an aft tilt mechanism and is spring deployed after
checkout.

An important part of the ASE necessary to launch a payload is the government-
furnished portion, or that which is supplied by the launch vehicle that is charged to the
payload weight. Generally, this includes fluid kits, electrical kits, wiring, and support
fittings that are not normally manifested on the shuttle, but are necessary for
integration of the payload in the shuttle.

In the case of the ground-based OTYV, this support equipment must be provided for
both the launch and return of the stage and payload. The weights for both the
government and contractor furnished ASE are shown in table 2.4.1-2. The common
government-furnished equipment is equipment that is common to most payloads loaded
in the shuttle, and includes a Standard Mix Cabling Harness (SMCH), mid payload bay
wiring harnesses, closed circuit TV, utility kits, and a 675 lb allowance for bridge and
keel fittings that is part of the normal shuttle manifest. Payload-spe.cific equipment
includes longeron and keel bridge fittings, latches, and guides, as well as pressurization
and vent kits, additional payload handling aids (extra RMS, MMU), and contractor-
furnished structures. Weights for the standard longeron and keel bridge fittings,
latches, and guides, as well as cabling and propellant handling kits, are per the February
25, 1985 Shuttle Systems Weight and Performance book, JSC-09095-79.

Weights. A weight summary is presented in figure 2.4.1-6 for a 10 klb multiple
manifest mission with a 1 klb payload rack. Included in structure weights are body shell
and stiffening ring structures, thrust structure, equipment support structures, tankage,
as well as ballute primary and secondary structures. Included also are all ballute and
heat shield support structures. Propulsion systems include both main propulsion and
reaction control system weights. Thermal control and protection includes tank insula-
tion, active thermal control, as well as ballute and body insulation for thermal
protection during thermomaneuver. Other systems are as shown. Space maintenance
provisions are not applicable on a ground based vehicle. Weight growth includes 5% of

all existing hardware and 15% on all other hardware.
Center of Gravity. One important step in validating a ground based shuttle

launched configuration is checking the compatibility of the proposed payload/vehicle

combination with the shuttle payload bay cg envelope. The possible payload/vehicle
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launch options are; 1) OTV with multi-manifest rack and payloads (33 foot ballute) or, 2)
OTV only but configured for use with an auxiliary tankset (42 or 66 foot ballutes).
Figure 2.4.1-7 shows the launch, abort, and landing cg locations for these options

assuming all propellants are dumped prior to abort landing.

Weight Trending. For the above chronological history of ground based ballute
braked configurations, figure 2.4.1-8 shows how the weights changed as the configura-
tions changed. Table 2.4.1-3 presents a breakdown of the weight changes.

2.4.1.7 Auxiliary Tankset Configuration and Impact
Auxiliary propellant tanks (tankset) are used on those missions requiring propellant

requirements exceeding the lift-off capability of the Space Shuttle.

2.4.1.7.1 Operation Description

When an auxiliary tankset is used with the OTV, the auxiliary tankset and payload
are transported to the Space Station on one flight and the OTV is delivered on another
flight. At the Station the tankset/payload is integrated to the OTV and the system is
launched on its mission. After completion of its mission the OTV/tankset returns to the

Station and are restowed in the Shuttle for return to the ground.

2.4.1.7.2 Baseline Configuration for Ground Based OTV Application

Figure 2.4.1-9 shows the auxiliary tankset configured for use with our final
configuration ground based OTV described in section 2.4.1.6. The tankset extends the
nominal performance capability of the OTV from 12 k-lb to 20 k-lb payload and also

provides the capability to perform the manned sortie mission.

Tankset. The design of the tankset is similar to the OTV itself. A graphite/epoxy
sandwich shell is used to transmit the payload and tank loads to the ASE. The tanks
themselves are supported by graphite/epoxy tubes to minimize boiloff losses. External
insulation proteets the tankset from wake impingement and ballute radiation heating.
The payload and ASE structural interfaces are the same as the OTV; however, the
tankset also has the interface needed to mate it with the OTV. Electrical and fluid
umbilical interfaces for both the ASE and OTV are also provided.

ASE. Rather than using the OTV's ASE, the auxiliary tankset has been designed
with its own ASE so it can be located further aft in the Orbiter bay. A payload length
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of 35 feet can be accommodated with this design. Deployment of the tankset is via the
RMS rather than rotating the ASE. This was selected to maximize payload length. The
ASE performs the same propellant fill/drain/dump and health monitoring functions as
the OTV ASE.

The ASE has two trunnions which transfer X and Z loads to the Orbiter. We have
assumed that the payload has a set of trunnions to carry Z loads so it does not have to
be cantelevered from the tankset. There is a keel pin both on the ASE and on the
tankset. The keel pin on the ASE provides a statically stable system when the ASE is
returned to the ground after delivery of the tankset. This keel pin reaches forward from
the ASE body to the Orbiter's most aft keel pin position. The pin support beam is
relatively flexible compared to the tankset shell, and so, does not transmit primary yaw
loads. Primary yaw loads are transmitted to the Orbiter via the keel pin on the tankset.
The keel pin is located to avoid exceeding the Orbiter's X load carrying capability for
the ASE's trunnions due to axial loads and yaw coupling loads. A payload cg position one

half the payload length was used to determine this location.

Impact on Ballute Sizing. Three different aeromaneuver configurations are
possible when using auxiliary tanksets; (1) the OTV alone goes through the aeromaneuver
after a 12 klb delivery mission, (2) the OTV plus tankset after a 12-20 klb delivery
mission, or (3) the OTV, tankset and crew module goes through the aeromaneuver. Each
of these configurations have different weights and cg positions and; therefore, require
different ballute sizes. Figure 2.4.1-10 shows the three configuration options and their
corresponding ballutes. The 66 foot ballute ensures no wake impingement heating of the
return payload; however, the wake heating boundary for the 42 foot diameter ballute
intersects the auxiliary tankset. The tankset is insulated externally with AFRSI to
preclude overheating the structure.

Figure 2.4.1-5 showed the ballute sizing criteria for each of these configurations.

Weights. Figure 2.4.1-11 presents a weight summary for a 7.5 klb return payload
manned sortie mission involving the main stage and auxiliary tank. Included in the
weights are inereases in avionies, electrical power and propulsion systems to man-rate
the vehicle, as well as increased ballute and TPS weights reflecting a 66 foot ballute.
All other OTV elements are the same as the ground based OTV multi-manifest stage
elements. The auxiliary tankset structures includes body shell, support rings, tankage
and tankage support. Thermal control includes tank insulation. Propulsion system

includes all manifolds and manifold interfaces. Data handling and electrical power
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subsystems inelude wiring, data bus, and interfaces between the OTV and payload, as

well as propellant usage monitoring instrumentation.

Center of Gravity. Figure 2.4.1-12 shows the launch, abort, and landing cg
locations in the Orbiter bay for the tankset with a 20 klb payload and the tankset alone.
Although the auxiliary tankset only condition exceeds the aft eg envelope, multiple
manifesting with additional payloads to fully utilize the payload bay would correct this
problem. Abort conditions reflect complete dumping of propellants prior to abort.

2.4.1.7.3 Alternate Configurations

Several alternate auxiliary tankset designs were configured for the system level
trades discussed in Volume Ill. The major options are shown in figure 2.4.1-13. The
integral tankset concept with 4 tanks provides a lower cg location for small propellant
loads because it is a shorter stage than a two tank system. However, as the propellant
load increases the weight penalty for using ecylindrical tanks increases. For ballute
braked vehicles and for the propellant loads considered the weight penalty more than
offsets the length benefit so the two tankset configuration provides a lower
OTV/tankset cg location.

The jettisonable concept shown provides better performance than an integral
concept but imposes the complexities of staging and disposal of the tanks.

The. integral 4 tank arrangement was initially selected to conduct system level
trades. The final auxiliary tankset made use of 2 tanks because of better performance

characteristics.

2.4.1.8 Configuration for 65k STS

During the first part of the follow-on work to the Phase A OTV study, the
sensitivity of the OTV systems to the launch capability of the shuttle was studied. For
this analysis, a down-sized version of the ground-based OTV was studied, for launch in a
shuttle with 65,000 b payload capability. This configuration is shown in figure 2.4.1-14.
All of the major subsystems on this vehicle are similar to those on the larger GB OTV,
as well as design groundrules and features. The ballute sizing groundrules are also the
same. The smallest ballute, 33 ft diameter, is sized by turn-down ratio criterion, and is
used on the single stage delivery missions. The next size is 36 ft diameter, sized by a
wake impingement criterion, and is used when the small auxiliary tankset is returned.
When a large auxiliary tankset is used, a 43 ft diameter ballute is required for minimum

wake impingement on the tankset. When a crew module is returned with the large
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auxiliary tankset, a 67 ft diameter ballute is required for aerostability. Summary

weights of this smaller vehicle as applied to various missions, are shown in table 2.4.1-4.

2.4.2 Ground-Based ACC Lifting Brake OTV
This section deseribes the operation and configuration of the ground-based aft
cargo carrier (ACC) OTV. This concept involves use of a main stage and auxiliary

propellant tank.

2.4.2.1 Operational Description

The ground-based ACC OTV main stage is launched in the aft cargo carrier. For
missions involving <8.4k lbm, the payload is launched in the Shuttle Orbiter cargo bay.
On orbit, the OTV and payload are mated, and the mission is performed similar to other
ground-based OTV concepts. Upon return to LEO, the OTV jettisons the lifting brake,
then is disassembled and stowed in the orbiter for the return to ground. On the ground,
the OTYV is refurbished and reassembled, then integrated into the ET ACC for re-launch.
For payloads <8.4k lbm, an auxiliary propellant tank is required and is launched along
with payload in the Orbiter cargo bay. Again, on-orbit assembly of the main stage and

auxiliary tank/payload are required.

2.4.2.2 Initial Reference Configuration

The initial reference ground-based ACC OTV main stage configuration is shown in
figure 2.4.2-1. The OTYV structure consists of two fuel tanks and two oxidizer tanks, a
central body truss structure, a forward support structure for avionies and electrical
power systems, and an aft structure for engine mounting and aerobrake support. The
portions of the forward and aft structures that support the LH2 tanks are collapsible to
permit stowage in the orbiter payload bay. Avionies and electrical power components
are supported by a rectangular composite structure with aluminum mounting doors,
located at the forward end of the vehicle. Other body structures include disassembly
provisions, payload interface latching provisions, and forward-mounted service
connector panels for fluids, gases, and electrical power.

The tanks containing the liquid oxygen and hydrogen are all-welded 2219-T87
aluminum pressure vessels. Each tank has spherical heads, and is supported at the ends
by conic ring structures. Each tank also has an internal support rod for transferring
axial loads. Because of the disassembly requirement, the LH2 tanks and supports are
equipped with latech fittings for easier tank removal. The fittings on the tanks serve

also as the attach fittings for stowage of the tanks in the ASE for return to the ground.

115



D180-29108-2-3

(IDVLS—ANZ MNVL

XNV + 71/d—1SL) SIHONNVT S1S OML HO4 ISV S133143H <

ONIZIS LIWIT SLS G99 <

6£8'SLL veLLLL /2’06 000'69 LHOIIM HONNVY TVLOL
—— — —— - 20V
GL6°0L <1 GL6'01 <7 GL6°0L <7 16E'9 ISy
v98'v0L 618°90L 00€'6L 609'8G 1HOIIM NHNE-LHVY LS
005'L 000°02 000'ZL 0006 AvO1AVvd
v08°L Zrs'L SYE'L GL6 SaIN14 ¥3H1O0
06528 0v8'EL 029'GS 058°0¥ INV113d0OHd SdW V101
982’c 982z'€c 6vY'e — LHOIIM AHA MNVL XNV
¥89'6 L5L'8 988'L v8L'L 1HDIIM AHA 3I9VIS
<
NYNL13Y "AI13d ‘AI73a ‘AlI73a
QINNVW 0319 039 039
NG'L M0Z et M6

S1S MG9 HO4 d3ZIS 3IDVIS NIVIN

(waqy) Lrewwng W6IBM ALO B80S 8D t-1°+'2 8IGEL

116




9951-AL0

/;

(AQ3MOLS) —
INVYHE OHaVY ,

\ \/,m

uonenbyuo) aoueiajey [enu]

D180-29108-2-3

— 1daouod ALO/ODY 1-2'+'g einbi4

{2)
FTNAON SIINOIAY

e e

7132 13INd

id

N
]

I~ i
s s2 \ /
' - / -—
R e
HSSF S22
\ -
W\
/ -
3<5t/ .
87 ) 66 = dOHd
{871 M6°€) -~
a.evl - INVLCH ~..

| e — - - = \

(87 M 9°€2)
a ..£0L - MNVL O

SJH
H31dvav 1/d

VA
p
1
1

\.\ -

HINNVIS HV1S

\r-!"ﬂ_'l

H31NdWOI

117




D180-29108-2-3

Quick disconnect interfaces are also provided for this operation for the fuel and

pressurization lines.

Meteoroid/debris shielding is provided by a double wall shielding around each

propellant tank. A 0.006 in outer wall is located 6.0 inches from a 0.01 in backwall
around each tank. This arrangement poses a significant problem in handling the main
tanks, however, especially in disassembly and stowage on-orbit.

Main propulsion is provided by a single RL10-IIB LO2/LH2 engine, and attitude
control is provided by a blow-down hydrazine system, with four thruster modules
mounted on deployable support arms. All propellant feed systems are similar to those of
the SCB ground-based OTV, except for extra disconnects required for removal of the
LH2 tanks for stowage in the orbiter. Pressurization of the tanks is accomplished using
an autogenous pressurization system similar to that of the SCB ground-based OTV
system. Thrust vector control is also similar. The RCS thruster support arms must be
collapsible in order to stow the OTV back in the orbiter cargo bay. RCS tankage,
thrusters, and other hardware is similar to that on other OTVs.

The aerobrake is a 40 foot diameter symmetric lift.ing brake, with a 12 foot
diameter central rigid heat shield, and a deployable fabric-membrane/composite-rib
structure as the rest of the brake. The fabric membrane is of KEVLAR cloth, since the
fabric temperature is limited to 600 degrees F (due to radiative heating from the
backwall to the vehicle). The sixteen brake ribs are of graphite/polyimide composite
structure, and are tailored to minimize deflections under aeromaneuver loading
conditions. The brake design is similar to that of the space-based lifting brake,
including the design of the central heat shield over the main engine. In this case,
however, the shield has only one engine door.

Thermal protection of the lifting brake is similar to that of the space-based lifting
brake OTV. It consists of an integrally woven NICALON cloth/Q-felt quilt attached to
the brake fabric membrane, and rigid tile thermal protection bonded to the central heat
shield.

Avionies and electrical power systems on the GB ACC OTV are similar to those on
the SCB vehicle.

A summary weight statement for this configuration is given in table 2.4.2-1.

Airborne support equipment includes those structures and interfaces necessary to
support the ACC OTV in the ACC for launch, as well as that equipment necessary to
support the vehicle disassembled in the orbiter bay for return to earth. For launch, the
ASE consists of a double cruciform beam structure at the aft end of the ET. Interfaces

include electrical, data, and fluids, and 'equipment is provided on the ASE for backup
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electrical power and control, and subsystem status monitoring. For return in the shuttle
cargo bay, the equipment support structure serves as the primary support structure,
with ASE cradles to be attached at both ends to secure the vehicle main segment and to
support the hydrogen tanks. This arrangemelnt is shown in figure 2.4.2-2. Pressurization
tanks are also provided for pressurization of the tanks prior to return to the ground.
These return ASE structures must be launched in the shuttle and therefore degrade the

overall performance of this concept.

2.4.2.3 Baseline Main Stage Configuration

Two factors influenced the need to update the ACC vehicle configuration. These
included the use of two advanced engines in the configuration, and the use of a
stretched dedicated version of the ACC shroud. Two engines were incorporated due to
cost optimum redundancy results as well as man-rating needs. The cylindrical section of
the shroud was allowed to be 42 inches longer than that shown on the original
configuration, allowing more length for the OTV based on studies performed by Martin
Marietta. Because of this, the thrust structure was moved aft, resulting in a decreased
engine gimbal angle for engine-out capability. This also allowed the thrust structure
and engines to be included with the aerobrake central heat shield and support in a
removable module that can be returned in the shuttle following the OTV mission.

The resulting baseline configuration for the ACC OTV is shown in figure 2.4.2-3.
The stage is designed for a maximum propellant capacity of 43,000 Ib LO2/LH2, and is
able to deliver 8400 1b to GEO. In order to perform the larger mission requirements, an

auxiliary tankset is added to the vehicle.

Lifting Brake. The lifting brake for the final ACC OTV configuration is a 42 ft
diameter deployable flexible brake. The brake is sized to satisfy the criteria of no wake
impingement on the vehicle, and also is the largest that can be easily stowed in the
available space in the ACC. A 14.5 ft diameter rigid shell forms the center of the brake
and is reusable. Doors are located in the dome for engine nozzle deployment. Twenty-
four, rather than sixteen, ribs attach to a ring on the dome and support the fabric TPS
portion of the brake. The ribs are supported by twenty-four spring-loaded lock-struts
which transfer aero loads into a major ring at the vehicle mid-body. These ribs, along
with the support rings, struts, and flexible TPS, are expended after each flight, and
cannot be returned in the shuttle cargo bay. Other features of this lifting brake are

similar to those of the updated SB symmetrie lifting brake configuration.




D180-29108-2-3

L9Gi-AL0

LNY1s-3sv

10a2u09) A130023Y AL O/DIV Z-2b'C d4nbld

FHNLXIH 37ddVHD /

AV8 0DHVYI HILIGHO
SINYLS "1dNS ANV
37avyHI 3svY

RN

1
| Pat Y
” [}
e ! 34013AN3
1/d XV
<8 .08L
\ z,

121




#rti-Al0
voneinbiyuo) [eut4

—£01 1dadu0) ALO OOV 89 €-2'+' 8inbig

NYNE
8.68'L9 6zZ'zg 1HVY1S e
SaIN14 IINAOW A1IIHSLYIH/NOISTINIOUd
691l 8oL HIHIO e SANVL ¥
0E9'ZY 0ED'Z¥ 'dOHd NIVW e ) I19VANIIXI—
LYAN:] OEY's AHQ e 1SI1SSYOH3V INVHE ONIL4

ATNO HVYOS NVIW  OQ3LVH NVW
{W81) AHVIANNS LHDIIM

14 2v OL Q3L
H313aNnvIia 3xvda

D180-29108-2-3

vl 14 ¢v

820-S18 NI G3INUNLIY

830-13 NI G3IHONNVY

‘S3UNLVIY

122



D180-29108-2-3

Airborne Support Equipment. The support equipment necessary to support the
OTYV in the ACC for launch is similar to that in the initial reference configuration. For
return to earth, however, the OTV is now disassembled into four parts: the core module,
with the central truss structure and LO2 tanks; the two LH2 tanks; and the engine/heat
shield module. The core module and the LH2 tanks have support structure built in, and
can be attached directly to the shuttle longeron fittings. The engine module must have
an ASE cradle for support. That same cradle, however, can be used to transport purge
and pressurization Helium, as well as instrumentation for vehicle monitoring for the
return trip. The arrangement of the disassembled OTV in the shuttle bay is shown in
figure 2.4.2-4. Weights for the launch and return ASE, including government and
contractor furnished ASE, are shown in table 2.4.2-2. The weight of the ACC shroud is

actually an equivalent weight to orbit, since it is jettisoned before ET burnout.

Weights. A detail weight summary for this vehicle is given in table 2.4.2-3, and

summary weights for various mission types are given in table 2.4.2-4.

2.4.2.4 Alternate Configuration

Disassembly of the ACC OTV and stowage in the cargo bay for earth return is a
major concern. An alternate approach to the updated configuration simplifies these
operations through use of a different tank arrangement. This design incorporates a
single large spherical LH2 tank and four small spherical LO2 tanks, as shown in figure
2.4.2-7. This configuration is sized for the same propellant loading as the updated
configuration, and is only about 300 lb heavier. Whereas the reference configuration,
when disassembled, takes up the entire shuttle payload bay, this configuration only fills
half of the shuttle bay, as shown in figure 2.4.2-8. This is accomplished by rotating the
LO2 tanks forward so that the vehicle can be returned in one piece, rather than four. A
weight summary is shown for this vehicle for various missions in table 2.4.2-5.

The LCC comparison of configuration No. 104 indicated it to be about $1.2 B less
than concept 107, however, still more than the SCB GB OTV.

2.4.2.5 Baseline Auxiliary Tankset Configuration

Figure 2.4.2-5 and 2.4.2-6 show small and large auxiliary tanksets to be used with
the baseline ACC mainstage to perform missions exceeding the capability of only the
main stage. These tanksets are similar to those described for the SCB OTV in that they
are launched in the shuttle cargo bay with the payload attached, then integrated with

the main stage on-orbit.
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The small tankset is designed to extend the performance capability of the ACC
OTV from 8.4 klbm. GEO delivery to 12-klbm GEO delivery. This tankset has four
cylindrical tanks with 13.8 klbm total propellant capacity, supported in a GR/EP
cylindrical shell. Propellant interfaces to the main stage are located at the perimeter of
the 170 inch diameter interface ring, with L02 and LH9 lines on opposite sides of the
ring.

The large tankset extends the performance capability to 20 klb GEO delivery or
7.5 klb GEO roundtrip. This tankset has two 0.707 elliptical dome tanks with 30.8k Ib
propellant capacity. These tanks are also strut-supported within a GR/EP ecylindrical

shell. Propellant interfaces are similar to those of the small tankset.

2.2.2.6 Configuration Impact for 65K STS

The sensitivity of the ACC OTV system to a 65,000 lb shuttle launch eapability
was studied in the follow-on portion of the OTV study. The configuration used for this
analysis was the same as used for the 72,000 1b lift capability shuttle, which was sized
to the maximum envelope of the ACC. This vehicle was shown offloaded to 38,810 b
propellant, with 65,000 lb shuttle lift capability. With this condition, the optimized
payload that could be delivered to GEO was reduced to 5300 Ib. The summary weights
for this configuration are shown in the first column of table 2.4.2-4. No further changes

to the stage configuration were made for this sensitivity.
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3.0 STRUCTURES

The focus of the structures effort has included selection of the most efficient
structural concepts, use of proper materials, propellant tankage design and

meteoroid/space debris protection for those tanks.
3.1 STRUCTURAL REQUIREMENTS

3.1.1 Key Design Requirements

Structural design requirements for the OTV studies have been taken from
applicable sections from References 8 through 13.

References 8, 9 and 10 were used as a composite structural design criteria for all
OTV structural systems. Reference 8 was used for all space operations remote from the
orbiter. Reference 9 was used to define interfaces and load factors while in the orbiter
and 10 was used for the remaining structural requirements applicable to operation in the
orbiter. References 11, 12 and 13 were used to define meteoroid and space debris

environments at the space station and at GEO.

3.1.2 Main Tankage Design Requirements

OTV propellant tankage structural requirements are summarized in Table 3.1.2-1.
In addition to these requirements, an additional requirement for "no explosive rupture in
a meteoroid/debris environment” has been applied to any propellant tankage exposed in
proximity to manned operations. This is a more severe criteria than the "leak before
rupture" criteria and is applied because of the possible catastrophic effect of explosive
rupture of a pressure vessel in proximity to manned operations. Explosive rupture is an
area of particular concern and will need to be better understood as space transportation
technology matures. It is discussed in more detail in Section 3.2.2.

Main propellant tankage associated with the OTV can be classed in three distinct
funetions, including vehicle main propuision tankage, propellant transfer tankage, and
on-orbit propellant tankage. Design operating conditions for the three tankage

functions are given in Table 3.1.2-2.
3.1.3 Body Structure Loading Conditions

The development of body structure preliminary loads considers the following

mission scenarios: a reusable delivery mission to GEO with a 11,000 lb multiple
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manifest payload including a 1,000 lb payload rack, a reusable delivery mission to GEO
with a 20,000 1b payload, and a reusable manned sortie mission to GEO with a 7,500 1b
up/7,500 1b return payload. Load factors considered for orbiter liftoff, landing, and
boost are per JSC 007700, Vol. XIV. Other loading conditions considered include OTV
main engine initial burn, and aeromaneuver, with combined limit load factors of 0.25
and 3.0, respectively. For ground-based vehicle body structures, the governing condition
is orbiter liftoff. For space-based vehicle body structure the governing condition is
aeromaneuver with a 7,500 lb return payload. For all aerobrake structures, the
governing condition is aeromaneuver.

For all body primary structure, an ultimate factor of safety of 1.5 was assumed.

3.1.4 Meteoroid/Debris Design Requirements .

A major consideration in design of reusable space vehicles, and in particular,
reusable cyeclic pressure vessels, is to ensure protection against meteoroids and man-
made debris particles in the space environment.

The meteoroid/space debris environments used in our analyses are shown in figure
3.1.4-1.

The meteoroids environments/flux reflected in our design and analysis correspond
to those shown in figure 2-13 from NASA TM 82478 as cited in NASA TM 82585 per
phase [ Groundrules References No. 9. The debris flux was taken from JSC-20001 for
500 km altitude.

Minimum meteoroid/debris survival probability goals and design exposure times
employed in this study are shown in Table 3.1.4-1. The minimum survival probabilities
listed for the three distinetly different tankage classifications were selected to be
compatible with the associated systems requirements. The goal of 0.999 per mission is
essential for vehicle tankage to permit the vehicle to realize an overall probability of
0.995 for mission completion. The overall probability of 0.995 for vehicle reliability per
mission was the result of cost optimization analysis. The design goals for the tanker and
storage tanks were somewhat arbitrarily selected as being less critical than that
required by the vehicle tankage.

The design exposure times shown are indicative of a manned sortie mission for the
vehicle tankage, assuming storage in a hangar between missions at LEO, a propellant
delivery to LEO for the transfer tankage, and a long-term stay at LEO for the storage
tankage.
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3.2 STRUCTURES DESIGN APPROACH

3.2.1 Main Tankage Design Approach

The tanks containing liquid hydrogen and liquid oxygen are all-welded 2219-T87
aluminum pressure vessels. They are designed by room temperature pneumostatie proof
test conditions corresponding to critical flight conditions and to desired critical crack
length capability at operating stress. This is to assure the mission service life
requirement with low probability of leakage subsequent to a successful proof test and
leakage check. For ground-based systems, the tanks are designed using "best fit"
fracture mechanics design data, whereas for space-based systems, more conservative
"lower boundary" data is used.

Figure 3.2.1-1 shows critical crack length versus operating stress for 2219-T87
aluminum tankage. This curve was developed from data for the indicated alloy at liquid
nitrogen temperature from NASA CR-135369, "Analysis and Tests of Deep Flaws in Thin
Sheets of Aluminum and Titanium", R. W. Finger, April 1978. Indicated on this plot are
three companion sets of operating stresses with associated proof test approaches for
cryogenie propellant tanks. The higher set of operating stresses correspond to the
lightest weight tanks which could be obtained from 2219 by demonstrating the required
residual fatigue life by conducting the required proof tests at the usage temperatures
for the individual tanks. The corresponding ecritical flaw size is approximately 2.5
inches. Tanks designed to these stress levels would be expected to fatigue to leak or
rupture if damaged even slightly following proof test. Also they could not be repaired if
damaged in manufacturing or in service.

Furthermore, the associated damage tolerance is not adequate for large
pressurized tanks spending their life in close prominity to the space station. The mid
range indicated stress levels would permit conducting the required proof tests at room
temperature with associated increases in damage tolerance and fatigue life. The lower
indicated stress level is half the room temperature yield stress which would permit
conducting a room temperature proof test of 2 x MEOP and would result in a critical
crack length of approximately 8 inches. Fracture mechanies analysis shows that tanks
designed to ‘this stress level would require approximately 5,000 full pressure cycles to
grow a 1/2 inch thru crack to rupture. Since a 1/2 inch thru erack would cause leaking
and loss of pressure, it might appear that this statistic is meaningless. However, what it
does mean is that a simple on-orbit mechanical repair could be made to the tanks

following a reasonable sized penetration and that it would still have the residual fatigue
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life to complete its required service life. The resultant damage tolerance and safety
requirements for tankage in proximity to the space station would require further
individual assessment.

Due to the nature of 2219-T87 aluminum, room temperature proof-testing is
recommended, giving the tanks an inherent factor of safety due to improved strength
characteristics at operating temperature. This will be discussed further for specific

vehicle configurations.

3.2.2 Body Structures Design Approach
Body structure design efforts included material selection for reusable OTV
systems, as well as loads and structural sizing analysis. Consistent with a lightweight
design approach, maximum use was made of advanced composites, including
Graphite/Epoxy and Graphite/Polyimide for body and aerobrake structures.
Loads and structural sizing analysis was based on determination of the following:
a. Launch loads
1. Fuily fueled or empty.
2. Payload or no payload.
3. Orbiter or aft cargo carrier.
4. Forward and aft ASE loads.
b. Main engine burn
1. Propellant loading.
2. Payload.
c. Aerobrake
1. Return payload.
2. Angle of attack.

3. Thermal environment.

In general, static load analysis was the basis of structural sizing, with
consideration for obvious dynamic load contributions. Specific structural sizings and

descriptions for each vehicle are given under vehicle structures analysis Section # 3.3.

3.2.3 Meteoroids/Debris Shield Design Approach

A study of past analysis on the subject of meteoroid and debris protection, as well
as recent developments in protection design philosophy, indicates the following major
issues:

a. Implications of a combined meteoroid/debris environment.
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b. Implications of meteoroid/debris shield failure.

c. Implications of allowing the pressure vessel wall to contribute to meteoroid/
debris shielding - including the effect on service life.

d. Optimum meteoroid/debris protection design, including shield standoff, and

use of alternate materials, such as MLI and GR/EP honeycomb sandwich.

Major trades and analyses were conducted to address these issues. A description
of the protection analysis tool and summaries of the analyses performed are detailed in
the following paragraphs. Table 3.2.3-1 summarizes unresolved issues and identifies

work that needs to be accomplished to support these resolutions.

Analytical Method. We have conducted our meteoroid/debris protection analysis
using a computer code "BUMPER" which was updated specifically to support our Space
Station Common Meodule proposal effort. This code indicates shielding requirements-
which are less than those reported in the Future Orbital Transfer Vehicle Technology
Study (NASA Contractor Report 3536). However, it does appear to be in reasonable
agreement with other published analysis methods. Key features of the code are
identified in Table 3.2.3-2. Input required by this code includes wetted surface area,
time, standoff distance, shield thickness and backwall thickness, on an equivalent mass
basis. Output from the code is the probability of no penetration through the given shield
and backwall combination. The organization which maintains this code recently
obtained a contract from JSC to conduct additional impact tests and analysis. Results

from their efforts will be incorporated in the code as they become available.

Combined Meteoroid/Debris Environment. The difference in protection require-
ments at GEO versus those at LEO is illustrated in figure 3.2.3-1. This plot was
prepared using the "BUMPER" code for a range of surface area-time values.

Note that the combined thickness range begins at 0.040 inches. Much smaller
combined thicknesses will provide predictable protection. However, realistic minimum
shield and backwall thicknesses can not be represented by extending this particular plot.
Once either thickness reaches minimum gage the thickness ratio can no longer be
maintained. Therefore an extension of this plot to lower combined thicknesses would
give unconservative or meaningless results. A different type of plot or analysis is
needed when working in the minimum gage range, with varying shield to backwall

thickness ratios or with varying standoff distances.
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Thus, for the purpose of comparison, using the plot in figure 3.2.3-1, and given a
surface area of 20,000 ft2, a probability of no penetration of .9999, and stays at LEO
and GEO for 0.5 days and 18 days, respectively, the design shielding thickness for the
LEO stay would be about 0.09 in, as compared to about 0.056 in for the GEO stay.

Thus, the short time in the debris environment at LEO is more critical.

Meteoroid/Debris Shield Failure. Table 3.2.3-3 presents a qualitative analysis of
varying degrees of meteoroid/debris shield failure. Prior investigators have spent a
considerable amount of effort in assessing meteoroid/space debris environments and
developing shielding penetration analysis tools. However, relatively little effort has
been spent assessing the phenomenon of explosive rupture of pressurized tanks. Under-
standing probable damage mechanics, cause and consequences of potential explosive
rupture and establishing a realistic criteria for "no explosive rupture" needs to be
addressed in greater depth and may prove to be one of the most important activities
related to space based tankage structural design.

Figure 3.2.3-2 addresses the issues which lead to a selection of criteria dealing
with meteoroid/debris induced explosive rupture of large pressurized tanks. If the
pressure shell is penetrated by the debris from an impact on the outer shield, and the
diameter of that penetration area is greater than the critical crack length of the tank,
explosive rupture of the tank could occur. This is most critical for transfer tankage and
storage tankage, which are exposed to impact in close proximity to manned structures

over extended periods of time.

Pressure Vessel Impact/Penetration. A review of prior work on meteoroid/debris
shielding indicates as a major issue the allowance for pressure vessel impact or
penetration. In allowing pressure vessel impact, the pressure vessel effectively becomes
part of the meteoroid/debris shielding. A previous NASA criteria for non-cycled tanks
(NASA SP-8042, May 1970) allowed penetration up to 25% of the wall thickness. The
FOTV study (NAS1-16088, May 1982) stated the position of allowing no damage to the
pressure vessel for eyclic tanks as a conservative criteria, due to insufficient data on
remaining service life of debris-damaged tanks.

Analysis of this issue requires consideration of the following factors:

a. Pressure vessel operating stress.

b. Critical crack length or flaw size.

Probability of no tank impact.

Probability of no tank penetration.
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e. Probability of no explosive rupture.
f. Residual service life.

g. Combined weight.

A qualitative analysis of this issue is presented in Table 3.2.3-4. Quantitative
analyses for each type of tankage considered are given in the vehicle-related sections.

Conclusions based on the analysis are presented in Table 3.2.3-5.

Meteoroid/Debris Protection Design. Meteoroid/debris protection design is based
on two factors: shielding requirement and structural requirement. Each vehicle or
tankage set has specific design requirements for primary structure and thermal control.
In some cases, this primary structure or thermal control structure can contribute to
meteoroid/ debris protection.

Because of the lack of conclusive studies into the efféct of alternate materials for
meteoroid/debris protection, materials such as MLI and graphite/epoxy honeycomb
sandwich were included on an equivalent mass basis as input to the "BUMPER" code.
The use of these materials is discussed further for each vehicle type.

Meteoroid/debris shield outer wall thickness and stand-off distance are generally
determined as a function of expected impact particle diameter and veloeity. For
separate shielding, shield-to-backwall thickness ratio is approximately 1:3. This is not
true when either wall reaches minimum gage. The selection of 0.016 inch minimum
thickness is based upon manufacturing and handling experience and extrapolation of
those experiences to space. Greater attention to this problem might result in some
reduction in the barrier gage but the reduction would be much less than 100% efficient

in terms of weight reduction.
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Vessel Operating
Stress

Critical
Crack
Length

Probability
of No
Tank Impact

Probability
of No
Tank Penetration

Probability
of No
Explosive Rupture

Residual
Service Life

Combined
Weight
(Shield & Tank Wall)
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Table 3.2.34 Qualitative Analysis of Separate vs. Integral

Separate
Protection
(Do Not Allow Tank Impact)

High: Tank Wall Sized
for R.T. Proof Test, Based
on Service Life Reqg't.

Less Than 2.0 Times
Shield Stand-off
Distance

High, Due to Separate
Shielding

Integral
Protection
(Allow Tank Impact)

Low: Tank Wall Sized

for R.T. Proof Test, Based

on "No Explosive Rupture"
Criterion.

Equals 2.0 Times
Stand-off Distance

Lower, Due to Allowing
Tank Impact

(Some Particles May Hit Tank Wall in Both Cases)

High, Due to Separate
Shielding

Lower Than Separate,
But Still High

(Some Particles May Penetrate Tank in Both Cases)

Lower: High Percentage
of Particles That Penetrate

Could Cause Explosive Rupture

Good, Unless Tank»
is Impacted - Then
Unknown

High - Requires
Additional Support
Structure
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High: Tank Wall Sized
for "No Explosive Rupture"
Criterion

Very Good - Lower Stress
Allows Longer Life, Even
if Penetrated.

Lower Than Separate
Protection
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. 3.3 VEHICLE STRUCTURAL ANALYSES

The major structural elements in the orbital transfer vehicles are as follows:
a. Aerobrake,
. b. Thrust Structure,
c. Equipment Support Section,
d. Propellant Tanks,
e. Support Struts/Body Structure,
Rings Integral with Tanks,
g. Payload Interfgce,
h. | Thermal/Handling/Meteoroid/Debris Protection,
i. ASE.

Trades and analyses completed for each of the OTV concepts are detailed in the

following paragraphs.

3.3.1 SB Ballute-Braked OTV

The space-based ballute braked vehicle concept is shown in figure 3.3.1-1.

Aerobrake. For this concept, a 50 ft diameter, high temperature fabrie, lobed
ballute is the aerobrake device. Because of high-temperature strength capability,
Nextel was chosen as the ballute structural fabric material.

In support of the Aeroassist Flight Experiment (AFE) effort, Goodyear has per-
formed fabric assembly detail design on a 25 ft diameter ballute operating at a
maximum of 20 PSF. For OTV, a direct scale-up to 50 ft diameter was initially
considered. However, because of the combination of small loads in the fabric membrane
and meridians, and large fabric surface area (both byproducts of the "highly lobed"
structural concept), a change to a modified scale-up having a variable stress structural
concept was undertaken. The result is a "moderately lobed" ballute with 10% less fabric
surface area. Key features of the three designs are shown in figure 3.3.1-2.

Weight trade studies indicate that the minimum weight of a throwaway ballute is
attained by tailoring the TPS such that the Nextel structural fabric assembly reaches a
maximum temperature of 18000F during the aeromaneuver. The high ratio of fabriec
strength to load would appear to suggest considering a design with fewer meridians, a
larger lobe radius and a lower lobe angle in the interest of reducing membrane area and

fabrication costs.
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The central heat shield of the ballute vehicle is a GR/PI honeycomb sandwich
structure situated over the main engine compartment, with structural doors to cover the
retracted engine nozzles during aeromaneuver. Designed for stiffness and stability at
aeromaneuver loading, the sandwich construction has 6-ply face sheets with a 1.0 in
thick honeycomb core with 4 pef density. The doors are of similar construction. For
thermal protection, both heat shield and doors are covered with FRCI-12 rigid thermal

tiles.

Thrust Structure. For this concept the thrust structure is a double cruciform,
rectangular beam structure designed to distribute thrust loads evenly to a thrust ring
and on to the aft support struts. The thrust beam structure is of graphite/epoxy design,
with mounting provisions for two engines, including thrust vector controllers. Designed
to minimize deflections at the center, assuming stiffness tailoring, the beams were
found to have an average cross-sectional area of 4.3 in2. Additional structure is

necessary for assembly and attachment.

Equipment Support Section. The equipment support section is an octagonal GR/EP
structure with aluminum doors for monitoring of avionies and electrical power compo-
nents. Because it is located in the mid-body of the vehicle, this section must also be
stiffness and strength designed to transfer forward and aft loads through the GR/EP

structure only. Pertinent member sizings are shown in figure 3.3.1-3.

Propellant Tanks. The propellant tank pressure shells are sized to permit room
temperature proof testing to 1.63 times the MEOP of 22.1 psi for the liquid hydrogen
tank and 1.32 times the MEOP of 23.7 psi for the liquid oxygen tank.

With respect to the hydrogen tank, the MEOP of 22.1 psi occurs subsequent to the
initial OTV main engine ignition and is based on an ullage maximum vent pressure of
22.0 psia plus a maximum head pressure of 0.1 psig. During operation, the ullage
pressure may perturbate several times between 22.0 and 18.0 psia. After return, the
tank is purged of its gaseous hydrogen before refueling. The hydrogen tank average
dome thickness is 0.036 in and cylinder thickness in 0.06 in.

With respect to the oxygen tank, the MEOP of 23.1 psi occurs also subsequent to
the OTV main engine initial burn and is based on a maximum ullage vent pressure of 22.0
psia plus a maximum head pressure of 1.1 psig. During operation, the ullage pressure

may oscillate several times between 22.0 and 20.0 psia. After return, the oxygen tank is
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partially purged before refilling on-orbit. The oxygen tank average dome thickness is
0.029 in.

Due to the cryogenic operating conditions, and based on room-temperature proof-
testing, the inherent ultimate factor of safety on strength is 2.84 for the hydrogen tank

and 1.92 for the oxygen tank.

Support Struts/Body Structure. The support struts are fabricated from graphite/
epoxy for economy, weight savings and to provide thermal isolation to the cryogenic
tanks. They are designed as pin ended columns to sustain the loads developed during
aeroﬁaneuver. The struts were selected for tank support and to provide the vehicle
primary load paths as being much lighter than a corresponding shell structure.

Strut cross-sectional areas vary from 0.7 to 0.8 in2, depending on location on the

vehicle.

Rings Integral With Tanks. The rings provided to permit the support struts to
support the propellant tanks are fabricated integral with and internal to the tanks for
structural weight and volume efficiency and to simplify thermal protection.

Typical ring cross-sectional areas vary from 1.2 to 1.75 in2, for LH2 and LO2

tanks, respectively.

Payload Interface. The payload interface is a GR/EP ring fabricated with payload
attachment pads and mechanism support, placed at the forward end of the vehicle to

support the payload under OTV main engine burn conditions.

Thermal/Handling/Meteoroid/Debris Protection. The plot in figure 3.3.1-4 was
developed specifically to assess meteoroid/debris protection for the tanks for the Space
Based OTV with ballute brake. It reflects a total tankage surface area of 1200 square
feet, a standoff distance of three inches, shields and backwalls as indicated, and 18 days
exposure at GEO plus the indicated time at LEO.

The minimum thermal protection of 30 layers of MLI plus a protective shield of
0.016 inches of aluminum provides the minimum required protection of 0.999 for the 18
days at GEO plus 0.6 days at LEO.

If the tank wall is allowed to contribute to the meteoroid/debris shielding, the
probability of no tank wall penetration exceeds 0.99995, making the possibility of

explosive rupture very low. Thus, for this vehicle, a separate shielding system with tank
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walls sized for service life requirement room temperature proof test is the preferred

concept.

ASE. For transport to orbit the OTV is supported in the orbiter bay, unfueled, by a
forward ASE ring which attaches to the P/L interface ring and at the thrust strut
interface ring by an open, U-shaped, ASE segment. These ASE segments will be similar
in concept but much lighter and simpler than the IUS ASE. Maturing the ASE design for
this or other vehicle concepts is not considered a necessary part of this study. The
particular OTV to ASE attachment locations were selected to facilitate installation and

removal of the OTV from the orbiter and to minimize OTV scar weight.

3.3.2 Space-Based Lifting Brake OTV
The space-based lifting brake OTV is shown in figure 3.3.2-1.

Aerobrake. The brake structure for the SB lifting brake obviously is qdite
different than that for the SB ballute brake. Table 3.3.2-1 identifies the focus of lifting
brake design activity. A qualitative analysis of two lifting brake structural concepts
was performed to determine the most efficient concept. One type of brake is supported
at the outer edge by an inflated fabric toroid, and the other is supported by rigid struts.
This trade is shown in figure 3.3.2—2. The preferred concept is the strut-supported
concept, as this provides the most stable structural concept, and minimizes possible
brake deformations.

The SB lifting brake OTV reacts brake rib support loads into the equipment
structure (ESS) through rib support struts. The ESS is sufficiently deep in local cross
section that it is well suited to reacting these loads without major weight penalty. The
rib support struts were designed to reduce bending moment in the rib and deflections at
the end of the rib, resulting in increased overall stiffness while reducing total rib
weight. The support struts are GR/PI struts with an average cross-sectional area of 0.6
in2,

The rib cross section and the stresses in the rib at the location of maximum
loading are provided in figure 3.3.2-3. The lifting brake ribs are designed to minimize
deflections at all points along the rib, and can be tailored to match the bending
moments along the rib. This is shown in figure 3.3.2-4.

The lifting brake ribs will be fabricated from graphite polyimide for structural
efficiency, economy and to survive the thermal environment with tolerance for local hot

spots, should they occur. The section if filled with honeycomb core to stabilize the 0.05
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inch side walls against buckling due to the combined axial compression and shear loads.
The central heat shield for this brake is similar in design to the ballute-braked OTV
central heat shield, with structural doors over the nozzle opening. The heat shield is of
GR/PI honeycomb sandwich construction.

Additional attention was also given to details of the various design sensitivities of
the covering fabric. The objective was to avoid sharp crease lines at the rib which
would cause excess local heating, limit fabric maximum tension loads and resultant axial
compression loads in the ribs. Those sensitivities are addressed in figure 3.3.2-5.
Excess local heating at the rib lines due to cross flow and local contour discontinuity is
a major concern with the fabric covered symmetric lifting brake. The problem is
eliminated by use of a wide radiused chord on the forward face of the rib section.
Aerodynamic heating analysis indicates that a rib chord of 12 inches is adequate to
avoid excess heating. Membrane analysis of the fabric spanning between adjacent ribs
shows that a chord width (a) of 6 to 8 inches will eliminate local creases and permit
acceptable installation tolerances without excessive deflections. With fabric strength in
excess of 200 Ib/inch the fabric loading is no problem.

The equations used to develop the plots in figure 3.3.2-5 are as follows:

a = 24 sin phi

RF = (b/2 sin phi) - R¢

S = (Rc + RF) (1 - cos phi)
NT = Pmax X RF

Pmax= 0.708 pSl ult
delta S = (ph x phi x (Re + RF)/90) - b

A major structural trade was made in regard to the lifting brake support method.
The pre-midterm concept of the lifting brake OTV included a brake that was articulated
to provide lift control. This type of design restricted the amount of vehicle-to-rib-
support, causing large bending moments, excessive deflection, and excessive weight. In
going to a design philosophy in which the brake is fixed so that the vehicle C. G. is
permanently offset, the vehicle-to-rib-support can be improved, resulting in decreased
bending and deflections, and weight. This redesign resulted in a weight savings of 725 lb

of brake and support structure weight.

Thrust Structure. This lifting brake OTV thrust structure is similar to the SB

ballute-braked OTV thrust structure, except instead of through a ring, the thrust loads
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CONCERN: EXCESS HEATING DUE TO CROSS FLOW AND CONTOUR DISCONTINUITY AT RIB LINES.

SOLUTION: CONTOUR RIB FRONT CHORD TO ELIMINATE FABRIC CREASE LINE. TAPER RIB
CHORD WIDTH (a) FROM 6 INCHES AT THE ROOT TO 8 INCHES AT MAXIMUM LOADING
TO PERMIT INSTALLATION WITHOUT CRITICAL TOLERANCES, EXCESS FABRIC LOAD
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Figure 3.3.2-5 Symmetric Lifting Brake Fabric Installation
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168

0oTVv-822




D180-29108-2-3

are directed into the engine support structure (ESS) through twelve struts. These struts

are of GR/EP design and have an average cross-sectional area of 0.5 in2.

Equipment Support Section. For this vehicle, the equipment support section is in
two segments, each having similar construction to the single structure of the ballute-
braked vehicle. Additional stiffening is needed at the payload interface and at the

brake support/thrust structure interface.

Propellant Tanks. The propellant tank pressure shells are similar in design to the
ballute-braked vehicle tanks. The tanks are loaded differently, however, at main engine
initial burn, reéulting in maximum pressures of 22.1 psia and 23.6 psia for the liquid
hydrogen tanks and liquid oxygen tanks, respectively. Purge and refill operations, as
well as flight perturbation conditions, are the same as the ballute-braked OTV. Inherent
ultimate factors of safety are also the same.

Average tank dome thickness for the hydrogen tanks is 0.036 in, and cylinder

thickness is 0.06 in. Average dome thickness for the oxygen tank is 0.029 in.

Support Struts/Body Structure. The support struts are similar to those for the
ballute-braked OTV. For this vehicle, however, the tanks are cantilevered from the
ESS, and so somewhat different conditions exist. The struts are stability-designed, and

cross- sectional areas range from 0.35 to 0.5 in2.

Rings Integral with Tanks. The .tank rings are the same design as on the ballute-
braked vehicle, but in this case have a cross sectional areas of 1.0 and 1.75 in2 for

hydrogen and oxygen tanks, respectively.

Payload Interface. For this vehicle, the payload interface structure is built into

the equipment support sections and consists of support pads and mechanism support.

Thermal/Handling/Meteoroid/Debris Protection. This vehicle has a larger tank
than the ballute-braked vehicle, but has partial shielding provided by the lifting brake.
Therefore, the debris shielding has the same definition as that on the ballute-braked
vehicle, providing in excess of .999 protection for the same mission.

Implications of meteoroid/debris impact to the aero brake surface are summarized

in table 3.3.2-2. Although protection while in use is not feasible those periods of
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exposure are sufficiently small that the probability of impact by a particle of significant
size is also small.

The size of penetration which can be tolerated without resultant excess heating,
rapid erosion and damage to the vehicle equipment is not known. Certainly that will
vary with the type and design of the brake surface and location of the damage.

Inspection for critical damage to the brake surface will be difficult. A lightweight
standoff witness plate aft of the brake may need to be considered to facilitate location
of critical penetrations. On-orbit repair techniques applicable to the specific surfaces

will probably be required.

ASE. This vehicle is transported to orbit in three pieces, including tank/equipment
module, propulsion module, and lifting brake. The tank/equipment module is supported
unfueled in the orbiter as an open, U-shaped pallet at the ESS location. The main
engines are supported on a second pallet, and the aerobrake is launched separately,

folded and attached to a fixture at the heat shield area.

3.3.3 Space-Based Shaped Brake OTV

Structures for the shaped brake OTV are similar in many respects to those used on
the SB lifting brake OTV and are shown in figure 3.3.3-1. Body structures, tankage, ESS,
and payload interface are all similar. The thrust structure, however, is similar to that
used on the SB ballute-braked OTV. The major structural difference is the aerobrake
structure that, along with debris/meteoroid protection considerations, and airborne

support equipment, are discussed in the following.

Aerobrake. The shaped brake shell consists of three major segments sized for
delivery to LEO in the orbiter. The elements of these segments are detailed to provide
a compromise between weight and complexity of on-orbit assembly.

Table 3.3.3-1 identifies the major issues addressed in the structural design/analysis
of the SB shaped brake OTV structure and figure 3.3.3-2 identifies the members
providing the major load paths and illustrates types of construction and structural
sizings.

Assembly consists of mating the three major segments to the tankage and
propulsion module. When assembled the tankage and propulsion module provides the
primary girder for the shaped brake. Since it is quite deep and is designed to withstand
launch loads in the orbiter, the brake maneuvering loads will not be critical for the

tankage and propulsion module. It provides relatively rigid support to the three major
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segments through a system of struts and transverse support beams located on 50 inch
centers. Only the attachment points and internal transverse beams are delivered
integral with that module. Sway braces at the module ends and at equipment support
locations, shown by dashed lines, retain the section shape.

The ceramic tile/SIP support surface, the longitudinal keel beams and the
transverse panel support beams, are all built up using graphite/polyimide (GR/PI) faces
and lightweight honeycomb core. The panel face and honeyecomb core thicknesses are
selected to provide the strength to withstand the aero braking pressure induced loads
and to restrict the maximum curvature at the supports to that which the SIP will
tolerate. The core and face thicknesses in the keel and transverse beams are selected to
stabilize the cross section and withstand the resultant beam bending and shear loads.

The side segment to center segment joints are primarily vertical shear load joints
accomplished by a series of tension fasteners, in oversized holes, and tapered shear pins
and/or keys to facilitate on-orbit assembly.

The brake shell and the tankage and propulsion module are joined by a series of pin
ended graphite/epoxy tubular struts. All of these struts, except the end sway braces,
are loaded in compression only. Thus, by match drilling for the pins on initial assembly,
and selective slotting holes on disassembly the on-orbit assembly will be simplified. The
joints will then be seated upon first loading.

Table 3.3.3-2 summarizes the tile support requirements. Providing a substructure
to support the ceramic insulating tiles is the dominant driver in the design of the shaped
brake shell structure. The primary issue is to avoid deflections of a magnitude that
would exceed the limitations of the SIP and result in loss of the tile. However, we have
not been able to obtain documentation of the SIP design characteristics. Therefore, we
have made our design correspond to the worst case design condition reported by
NASA/MSFC OTV personnel. Our analysis of that condition indicates a limit in the
curvature of the support structure corresponding to a local EI/M or radius (R) or 160
inches. This corresponds to a maximum relative deflection of 0.02 inches under the 5

inch SIP. This limitation is reflected in the panel design for the brake panels.

Thermal/Handling/Meteoroid/Debris Protection. Tank areas for this vehicle are
similar to the lifting brake OTV, so the same type of shielding can be used. As with the
lifting brake, there are several unresolved issues with respect to the meteoroid/debris
implications of the shaped brake surface. Although protection while in use is not
feasible those periods of exposure are sufficiently small that the probability of impact

by a particle of significant size is also small.
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The size of penetration which can be tolerated without resultant excess heating,
rapid erosion, and damage to the vehicle equipment is not known. Certainly that will
vary with the type and design of the brake surface and location of the damage.

Inspection for critical damage to the brake surface will be difficult. A lightweight
standoff witness plate aft of the brake may need to be considered to facilitate location
of critical penetrations. On-orbit repair techniques applicable to the specific surf’aces

will probably be required.

ASE. Airborne support equipment for the tank module portion of this vehicle is
similar to that for the tank module of the SB lifting brake OTV. Because of the engine
placement, a separate ASE is not required to launch the main engines. The aerobrake,
however, is launched in three separate pieces, and requires a support structure for

launch.

3.3.4 On-Orbit Propellant Storage Tanks
The on-orbit storage tank body structures are inherently different from those of
other vehicles as shown in Figure 3.3.4-1. The following paragraphs detail analysis

performed in tank/body structure design, as well as meteoroid/debris protection.

Tank/Body Structure. The body and tank structure design of the two on-orbit
propellant storage tanks is quite different from that of the candidate vehicle concepts.
The differences are due to the fact that the usage scenarios and resultant design drivers
are quite different. The LOX and LH2 storage tanks are fabricated and launched as
separate units rather than as a single unit sharing a common structural shell/meteoroid/
debris protection system. The storage tanks are launched empty which results in
minimal launch loads. The outer shell of waffle construction reacts the launch loads and
supports the thin walled inner pressure shell by fiberglass straps which provide thermal
isolation. This outer shell also interfaces with the ASE members in the spherical dome
region of the tanks where clearance is available to permit a light weight ASE and is
tailored to reflect the launch loads. The same ASE set is used for each of the tanks
although it is designed for the heavier, LH2, tank support loads. The pressure shells are
submerged in water and hydrostatically proof tested before being integrated with the
outer shells. The assembled tanks are loaded into a vacuum chamber which is evacuated
with the annulus exposed to chamber pressure for thermal testing. Following thermal
testing the annulus is filled with dry helium and sealed for removal and transportation to

space, where it is again opened to the environment of space. Thus the storage tanks
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function as dewars but never have to withstand the loads of being evacuated within the
atmosphere.

A number of separate requirements or considerations have led to the selection of
this design concept. The degree of thermal isolation required dictated limiting load
paths and thermal paths between the two shells. That plus orbiter launch capability
would dictate launching the LOX tank only partially filled. Launching the LH2 tank
filled is a possibility and was evaluated in terms of tank and ASE weight impact.
Complications of maintaining helium pressure while being filled with LH2 will probably
dictate launching the LH2 tank empty.

Several factors support the decision to fabricate the two tanks as separate units.
The most important is the consequence of building them integral with a common
meteoroid/debris protection shield and then sustaining punctures or otherwise
developing leaks in each. Separate units simplified changeout. Also it would be poor

orbiter utilization to manifest two large low density items simultaneously.

Thermal/Handling/Meteoroid/Debris Protection. Structural considerations dictate
a minimum outer wall of aluminum isogrid (tmin = 0.05 in.) for this configuration. In
addition, two major-cooled shields (t = .01 in. each) and 120 layers of MLI contribute to
meteoroid/debris shielding, assuming the effectiveness of the vapor-cooled shields and
MLI as meteoroid/debris protection to be 50 percent on an equivalent mass basis. Using
a stand off distance of 6.0 in., an analysis was conducted to determine the optimum
backwall and whether or not the tank wall would contribute to meteoroid/debris
shielding. Using the critical crack length data explained in Section 3.2.1, as well as
shield sizing data generated by the "BUMPER" code, a comparison was made of separate
and integral shielding concepts. Fig. 3.3.4-2 shows a typical plot of probability and
critical crack length versus combined wall thickness (outer wall, vapor, coded shields,
backwall, and tank wall) for the on-orbit LO2 tank. The plot of the same data for the
LH9 tank is similar but more complex, due to the significant cylindrical section in the
LHg tank configuration. Pertinent data used in the trade are shown in Table 3.3.4-1.

With separate shielding, using a design condition of .995 probability of no impact
on the tank wall, and using a tank wall sized for service-life proof test, probability of
explosive rupture could be up to .003, and total system weight is 1240 b, for the LO?
tank. With integral shielding, using a tank designed for no explosive rupture, although
the probability of impact on the tank is greater, and probability of tank penetration is
also greater, the probability of explosive rupture of the tank is negligible because the

critical crack length is not exceeded. In addition, the combined weight of the system is
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only 1074 1bs for the LO9 tank. Similar results are shown for the LH2 tank. From this
trade, it was determined that the on-orbit storage tanks should be allowed to contribute

to the meteoroid/debris shielding and be designed for a "no explosive rupture" condition.

3.3.5 Propellant Resupply Tanker

Tank and Body Structure. The propellant resupply tanker shown in Fig. 3.3.5-1 was
evolved and selected as a result of a trade study. The design selected employs isogrid
tank pressure shells supported by fiberglass struts which also serve as primary structure
for the module. The thermal protection system provides the outer wall for
meteoroid/debris protection and consists of 50 layers of MLI and purge containment.
The alternate concept employed struts to support the tanks and an outer structural shell -
to serve as primary structure for the module. Analysis showed that a minimum
structural shell weight is considerably greater than the weight of the struts for the
selected concept and that the selected concept is more than 800 pounds lighter than the
alternate concept. Both concepts employ two trunnion support rings fabricated integral
with the module with the keel fin supported by the trunnion support ring between the
two tanks.

The inboard chord of a kick ring (not shown in sketch) is fabricated integral with

the isogrid pattern at the location where adjacent struts meet to support the tanks.

Thermal/Handling/Meteoroid/Debris Protection. Structural considerations on this
vehicle dictate using isogrid tanks to supply stiffness for launch. Because of operation
in proximity to manned systems, the condition of "no explosive rupture" was applied to
the tanks, and the tanks were allowed to contribute to meteoroid/debris shielding.
Because of the short stay of LEO, however, the minimum 50-layer MLI/purge
containment system was found to provide the .997 probability of no tank impact alone.
Allowing the tank wall to contribute to the meteoroid/debris protection gives a very
high probability of no tank penetration, and the chance of explosive rupture is

negligible, due to the tank design.
3.3.6 GB Ballute - Braked OTV
The configuration of the ground-based ballute-braked vehicle is shown in Figure

3.3.6-1.

Aerobrake. For this concept, three sizes of ballutes were designed: 33 feet

diameter for unmanned multiple manifest missions, 40 feet diameter for GEO delivery

182




€EIvr-ALO

D180-29108-2-3

1d3au0) auijaseg uoneINBifuoy) syue Jayue| [-G'E°E ainbi4

LINN 1SHId 0L X £°61$ “1SOD NOI1LINAOHJ @
wc_.ox 6'661$ '1S0J LNIWJOT3IAIq e

W87 64v9 St ONIGWN1d
ONIANTIONI LHOIIM WILSAS HINNVL TVIOLe

. VISd 000 e
W81 vZL ALIOVdVOe
A9VHOLS WN|T3H e

Wa1£12°LHOIIM WILSAS NOLLISINDIV®
1TW SH3AVT 0S A3OHNd WNITIHe
NOILVINSNie
JOVTIIN %L HLIM WA 9PLESe
VISd G°LL 1V ALIDVdV)e
gld 808 'JWNTOA _
6ZL ‘1HDIIM®
EV'6 'HLONI®
£E'EL ‘'HILINVIAe
T13SS3IA FUNSSIHd e
MNVL NIOAXO e
g1 68G LHOIIM WILSAS NOILISINDIV @
TN SHIAVT GE A3DHNd WNITT3IHe
NOILVINSNI
39V1IN %L HLIM N8 8588
VISd §'LL 1V ALIQVdVI ®
gld 9L1C ‘JWNTOA®
Z00L ‘LHOIIMe
£2°6L 'HLONIT*
€E°ElL ‘HILINVIQ.
T13SS3IA JUNSSIHd @
MNVL NIOOHAAH e

SHILIWVHVI NOISIA HIANNVL @

SONIY LHOddNS

JHNSOTONI 354

MW

nd

SHIAV 05 =k

207404
73sS3A
3HNSS3Hd
aiyonos|

SLNYLS f
- AXO0d3
31IHdVHO 4

ZH1 4o

13SS3AA i
3HNSSIHd
aiyonosl

(mly]
SHIAVIGE

dWNAa 1408V HOod

IDVHOILS WNIT3H

.

IHUNSOTONI
394Nd

N\

1334 NI SNOISN3WIQ e
SANNOd NI 1HDIIM e

183




8(8-AL10Q

D180-29108-2-3

abeis a1buIS—A | O payelg ainjieg paseg punolg) uoneinblyuoy) [-9'c s a1nbi4

1NHLS
140ddNS ISIY4V
IONVI4 HIHL L0 HJIMANVS
YNV _ > 30INIATO4/HD
‘ _ 50
_ .
A T 4 J0V4HILNI
xo08 s VO1AVd
JINOIAY 1y z@l cm_u “_th_oq
30V4HILNI MNVL i
HO1V7 ALO OL 3SV S0° (S30vd v)
NNV 1 VITV1IH3IV
Nid 7133 3sv -
gld/811'8=0"via 14659 l/_.— SHIAVT bE
. - Q . .
gld/@noe=d viard g1y ) —— T
¢l3/81vZ= 0 via 14 e¢ _ .
31N17VE A3INIV. , AYMY 1ND 3
avy @13IHS S1Ha3a -
(S30V1d Z) INION3 ve /a104H0313IW
30vdS aNY 3ISY
a30NVAQY ! ‘31N1vE #
A 4 A
(S30v1d ¥) dWNQ v | !
1NV113d0Md ) Nid via
HOd s311108 ;I\ | NoINNNuL ALO M3IA TYNH31X3
WNI3H 3sv P N va
/
SNOINNNYL 3SV z. —— H31SN19 SO

z
0990y = Oy

ynvyi %o

HOLVIAVH Sd3

: 174}
HLON3T ISV ONIY SOINOIAY
8EL -
- . H19N37 ALO
(.9°L.62)
9'G65¢

z
g1scor= Hm
NV CH




D180-29108-2-3

missions when auxiliary tanks are used, and 65 feet diameter for manned missions when
auxiliary tanks are used and a manned capsule is returned. Ballute design is similar to
that of the SB Ballute - braked OTV.

Thrust Structure. The thrust structure for this vehicle is similar to that of fhe SB
Ballute - braked OTV.

Equipment Support Structure. The equipment support structure for this vehicle is
similar to that of the SB Ballute - braked OTV, except that it is a eircular structure to
be compatible with the vehicle body shell. Also, the mounting doors are assumed to be
load carrying so that the whole structure can be made lighter. This is possible because

equipment maintenance can be performed on the ground.

Propellant Tanks. The propellant tank pressure shells are sized to permit room
temperature proof testing to 1.37 (best-fit fracture mechanies data) times the MEOP of
22.1 psi for the liquid hydrogen tank and 1.32 times the MEOP of 33.3 psi for the liquid
oxygen tank.

With respect to the hydrogen tank, the MEOP of 22.1 psi occurs subsequent to the
initial OTV main engine ignition, and is based on an ullage maximum vent pressure of
22.0 psi plus a maximum head pressure of 0.1 psig. During operations, the ullage
pressure may perturbate several times between 22.0 and 18.0 psia. After return, the
tank is purged of its gaseous hydrogen and repressurized with helium before return to
the ground. The hydrogen tank average dome thickness is 0.030 in. and cylinder
thickness is 0.05 in.

With respect to the oxygen tank the MEOP of 33.3 psi occurs subsequent to shuttle
ET burnout during launech, and is based on a propellant vapor pressure of 20.0 psia plus a
maximum head pressure of 13.3 psig. During operating, the ullage pressure may
perturbate several times between 22.0 and 20.0 psia. After return, the oxygen tank is
partially purged and allowed to warm and pressurize before return to the ground. The
oxygen tank average dome thickness is 0.031 in.

Due to cryogenic operating conditions, and based on room-temperature proof-
testing, the inherent ultimate factor of safety of strength is 2.39 for the hydrogen tank
and 1.92 for the oxygen tank.

Body Shell Structure. The body shell is fabricated from graphite epoxy with a

NOMEX honeycomb core. This type of structure was chosen for the ground-based
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vehicle as being the most effective for supporting a payload, as well as the fuel and
oxidizer tanks, during launch. The design of this structural shell is based on analysis
given in the Orbital Transfer Vehicle Concept Definition Study Vol. 4 (NA58-33532,
1980). Forward of the equipment support section, the shell is made up of 3-ply GR/EP
face sheets with a 0.5 in.,, 4 pef NOMEX honeycomb core. Aft of this, to the ASE

interface, 6 ply face sheets are used with a 0.5 in., 4 pef core.

Rings Integral with Tanks. Rings are similar to those in the space-based ballute-
braked vehicle, but are sized for launch load conditions. Typical ring cross-sectional
areas vary from 1.5 in2 to 2.0 in2 for the LH2 and LOg2 tanks, respectively.

Payload Interface. Similar to SB Ballute - braked OTV

Thermal/Handling/Meteoroid/Debris Protection. Because of mission type and
duration, this vehicle, like the SB vehicles, needs only minimum protection, and the
tanks can be designed for service life requirements, instead of a "no explosive rupture”
condition. The GR/EP honeycomb sandwich body shell and 34-50 layers of MLI more
than adequately provide the necessary protection. Additional protection must be

provided at the payload interface area only.

ASE. The aft ASE for this vehicle is a GR/EP cylindrical shell with longerons at
the orbiter trunnion fitting locations for load distribution. The design is based on
analysis from NAS8-33532 (Ref. 1). Forward ASE is included as a heavy ring and fittings
integral to the vehicle body shell.

3.3.7 Auxiliary Propellant Tank

The design of the integral auxiliary propellant tank is conceptually quite similar to
that of the GB OTV. A sketch is provided in Fig. 3.3.7-1. The two tank heads and
supports for the LH9 tanks are substantially identical to those for the OTV. The
auxiliary LH9 tank differs from the OTV LH2 tank only in the elimination of cylindrical
section whereas the auxiliary LOX tank is smaller than the OTV LOX tank. The
structural shell for the module and its support in the orbiter are quite similar to that for
the OTV. The major distinction is a different aft ASE with the keel pin support
cantilevered forward of the ASE ring to reduce the yawing moments. The module
structural shell is locally recessed to provide clearance for the keel in support. The

clearance available for the aft ASE, and not available for the OTV aft ASE permits a
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much deeper and lighter ASE structure. The forward trunnion support is substantially
identical to that for the OTV.

3.3.8 GB ACC Lifting Brake OTV

The final configuration of the ground-based lifting brake OTV is provided in figure
3.3.8-1. This design is similar to the original reference configuration, except that it is
longer, and has two advanced engines, rather than a single RL10. The thrust structure is
larger and heavier, as well as the aerobrake support structure. The structural design
loadings and features are given in table 3.3.8-1. These features are discussed in detail
in the following paragraphs.

Aerobrake. Structural design of the GB ACC lifting brake is similar to that of the
SB lifting brake, except the diameter of the brake is 42 feet, and the rib support struts
are deployable, and are tied into a heavy support ring around the vehicle. Like the SB
lifting brake, the brake ribs are tailored to the bending moment distribution in order to
minimize deflections of the brake. Because of the need to recover and return the
vehicle, the lifting brake is expended after each flight, so separation provisions are
included. The flexible portion of the brake, including ribs and support struts are
expended, while the heat shield remains intact.

The original reference design of the GB ACC lifting brake OTV had a 40 ft
diameter deployable lifting brake that tied into the central truss structure of the

vehicle.

Thrust Structure. The thrust structure for this vehicle is a strut-supported beam
structure that transfers thrust loads to the central vehicle truss structure, as well as
directly into the propellant tanks. The thrust beam is of GR/EP design, with mounting
provisions for two advanced engines, and associated thrust vector controllers. Average
cross-sectional area of the beam is 3.5 in2. Additional structure is necessary for
assembly and attachment.

The original reference configuration had a deep-beam thrust structure that
distributed thrust loads from a single engine into the central box-truss structure and

into the propellant tanks.

Equipment Support Section. The equipment support section is a rectangular box

structure at the forward end of the vehicle at the payload interface. The ESS consists
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of GR/EP truss structures designed to support the equipment during aeromaneuver

conditions, and aluminum load-carrying plates for attachment of avionies.

Propellant Tanks. The propellant tank pressure shells are sized to permit room
temperature proof testing to 1.37 times the MEOP of 31.72 psia for the fuel tanks and
1.32 times the MEOP of 22.1 psia for the oxidizer tanks.

Design conditions for these tanks are the same as for the GB Ballute-braked OTYV.
The fuel tanks are designed for OTV main engine ignition, with a maximum head
pressure of 0.1 psig. The oxidizer tanks are designed for ET burnout condition, with a
head pressure of 13.7 psig. After return from orbit, the fuel tanks are purged and
repressurized with helium, but the oxidizer tanks are only partially purged prior to
return to ground.

Because of the nature of these tanks, the structural design is different from those
of other OTV classes. A central support rod is included in each tank, and attachment is
at either end of the tank, instead of at mid-tank rings. The hydrogen tank average dome
thickness is 0.025 in. and the oxygen tank average dome thickness is also 0.025 in.

For the case of the ACC OTV configuration re-design, with a single LH2 tank, and
four LO92 tanks, the tanks have the same design conditions, but do not have the central
support rods. These tanks are supported at the outer ring structure. The hydrogen tank
average skin thickness is 0.025 inches, and the oxygen tank average skin thickness is
0.025 inches.

Body Structure. The body structure for this vehicle consists of a central web-truss
structure with lateral stiffening struts, and a deep-beam forward equipment support
structure. For launch, all propellant loads are supported directly by the ACC support
beam. The loads are distributed into the tank structure through the internal support
rods. Thrust loads and aeromaneuver loads are reacted into the tanks and into the
central body structure.

The central web structure is made up of GR/EP composites, and has an average
unit weight of 1.9 1b/ft2. The LHg9 tank support struts are of GR/EP design and have an
average cross-sectional area of 0.5 square inches. The LOg2 tank lateral sway struts are
of GR/EP, and have an average cross-sectional area of 1.2 square inches. The
equipment support beam is a GR/EP box beam, with cross-sectional area of 4.0 square
inches. Other structures include equipment support and installation provisions, latch
assemblies for tank removal, umbilical interface plates and mechanisms, and orbiter-

return support fittings.
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In the original reference ACC OTV, the central body structure was a box truss
structure with GR/EP struts. Other structures were similar to the current reference
desigﬁ.

With the vehicle design trade, alteration of the basic structural concept of the
vehicle caused the primary structure to change from a central truss structure to an
external eylindrical body shell. This ecylindrical shell supports the single LH2 tank,
thrust structure, and aerobrake during launch, and provides the load path for thrust and
aeromaneuver as well. The four LO9Q tanks are cantilevered from the cylindrical shell
during thrust and aeromaneuver, but are directly supported by the ACC beam structure
during launch. The eylindriecal shell is of GR/EP sandwich, and has a unit weight of 0.71
Ib/sq ft. Avionics equipment is supported from the conic section of the body shell.
Other structure includes LOg9 tank support structure and disassembly mechanisms, aft
thrust structure support struts, equipment installation provisions, umbilieal interfaces,

and shuttle-return fittings.

Rings Integral with Tanks. Rings are included in the tanks for this vehicle concept

for stabilizing the tank walls during launch. Cross sectional areas average 0.3 inZ2.

Payload Interface. The payload interface is integral with the forward body beam
structure and equipment support structure. Pads for payload attachment and

mechanism support are provided at 8 locations on the forward end of the vehicle.

Thermal/Handling/Meteoroid/Debris Protection. Like the other vehicles, the ACC
vehicle has a limited LEO exposure to debris and has limited operation in proximity to
manned systems, so the meteoroid/debris protection can be separate from the tanks, and
the tanks sized for service life requirements. For this configuration, protection must be
provided for 1280 ft2 of wetted area, and the protection must be attached directly to
the tanks themselves because of the vehicle configuration. The minimum gage shielding
(0.016 in aluminum) and the minimum MLI for thermal control (30 layers) provides
adequate protection for the vehicle tankage. Fiberglass supports are used to provide the
3.0 in outer shield standoff, and to minimize heat leak to the propellant tanks. This
presents a potential problem and will need further analysis to determine the feasibility

of suech a method.

ASE. The ASE structure provided in the aft cargo carrier is a double cruciform

deep-beam structure which interfaces with the OTV at the forward end. Attachment
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provides direct support of the propellant tanks and of segments of the equipment
support structure.

The ASE required to return the ACC OTV in the Shuttle includes a support cradle
for the heat-shield/engine module, and support for the two LH2 tanks and vehicle core
module. The support cradle is a GR/EP truss cradle, with interfaces to the Shuttle at
two longeron fittings and one keel fitting. This cradle also provides support for the
repressurization tankage, as well as the vehicle-return instrumentation. The structure
required for the LH9 tanks and vehicle core module is built into the vehicle structure,
and includes longeron and keel pins. All other structure required is government-
furnished support structure in the Shuttle, such as longeron and keel bridge fittings and

latches, and cabling support structure.
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4.0 PROPULSION

The OTV propulsion systems include the main propulsion system (MPS) and the
reaction control system (RCS). The main propulsion system analyses are discussed in
paragraph 4.1. The reaction control system analyses are discussed in paragraph 4.2.
The analyses discussed in the following paragraphs was based on use of a ballute
aeroassisted space based OTV although similar results would be anticipated for any of

the vehicles deseribed in Section 2.0.

4.1 Main Propulsion System
The main propulsion analyses focused on the selection of the propellant and

engine.

4.1.1 Main Propulsion System Requirements '

The primary requirement of the main propulsion is to provide thrust for the
vehicle on demand in order to produce velocity changes for orbit transfers. Specific
MPS burn requirements are:

a. Perigee burns for insertion into LEO-GEO transfer orbit.

b. Circularization at geosynehronous altitude if required for the mission.

c. De-orbit from geosynchronous orbit to low earth orbit or aerobrake maneuver
altitude as required for the mission.

d. Veloecity corrections if the required delta-velocity is greater than 20 feet/second.

e. Provide velocity corrections prior to aeromaneuver for aeroassisted vehicles.

f. Provide velocity corrections required after the aerobrake mission phase due to
atmospheric dispersions.

g. Circularize the orbit for recovery by the Shuttle or for recovery at the space

station.

Other requirements of a more general nature are:
a. Be reuseable for at least 10 missions to minimize recurring costs.
b. Satisfy man-rating requirements.
c. Be compatible with Shuttle launch eapability.
d. Be capable of operating in either a ground based or space based mode.
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4.1.2 Main Propellant Selection

This trade was conducted as part of the midterm effort and used the BAC version
of the Rev. 7 nominal mission model. This version had 252 OTV flights (vs 450 for the
NASA model) and turned out to be essentially the same as the NASA Rev. 8 nominal
model (257 flights). Although the Rev. 8 low model (145 flights) would have reduced the
difference between the high and low performance concepts it was judged the conclusion
would still be the same so the trade was not rerun. The other difference associated with
the mid-term trade was that the weight of the vehicles was lower and, should the high
final weights have been used, the higher performance concepts would again be more
desirable. The remaining paragraphs of this section describe the trade as it was
conducted. .

Nine different propellant combinations were initially considered. Performance
characteristies for the propellants are presented in figure 4.1-1. The development cost
characteristies for engines which use these propellants is shown in figure 4.1-2. There
are essentially two groupings relative to cost. Applying a screening criterion of
selecting the highest performer (Isp) from each group based on development cost, in
addition to a non-cryo propellant and a propellant suitable for system evolution, resulted
in selecting LF2/LH92,LO2/LH2, MMH and N204, and a hybrid using N2O4/MMH and
LO92/LH2 for further examination.

The configuration and performance characteristies for OTV's using the four
candidate propellants are presented in figure 4.1-3. The use of single stages for the
cryo options is the result of preliminary studies showing less than a 2-3% propellant
penalty relative to two stages for an aerobraked OTV. A major contributor to this
situation is the duplication of systems when two stages are used. The storable option
however did benefit using two stages primarily because of the staging of inert weight
offset the lower specific impulse. Specific impulse and bulk density contribute to the
dry weight which in turn influences the propellant requirement. Based on these factors
the LF9/LH9 systems require the least propellant followed by LO2/LHg2. The storable
system even using two stages required nearly twice the propellant as the LO9/LH2
system. The hybrid system provided an improvement over the storable but still required
considerably more propellant than the all eryo systems.

The undiscounted and discounted life ecycle cost (LCC) comparison of OTV
programs using the candidate propellants is shown in figure 4.1-4. All hardware and
operations elements identified in Section 2.0 are included. The N20O4/MMH system has
the least development cost but its high operations cost associated with propellant

delivery (due to low Isp) resulted in the highest LCC. A LOg2/LH2 system gives the least
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LCC if propellant scavenging is used even though its performance is not as good as
LF2/LH2. This occurs because over 30% of the propellant is delivered via scavenging
which reduces the net propellant delivery cost by 30% relative to a system that does not
use scavenging. Although LH2 could be scavenged for the LF2/LH2 option it represents
only a small fraction of the total propellant requirement and was judged not worth the
complexity. The hybrid system had even a higher development cost than the LF9/LH2
system primarily because two stages rather than one required development.

Our recommendation for main propellant is LO2/LH2. This system provides a
discounted life cyecle cost advantage of 9% over the LF2/LH2 when propellent
scavenging is used. In addition, the LO3/LHg does not have the risks associated with
handling and the extra equipment and operational procedures associated with LF2. The
recommended LO9/LH2 system provides a 30% LCC advantage over the storable system
due to the differences in operations cost resulting from its performance characteristies.
For performance reasons the storable system required use of two stages and this would

also be additional operational complexity relative to the one stage LO2/LH2 system.

4.1.3 Main Engine Selection

The analysis of main engine candidates was focused on those using LO2/LH2 since
that was the selected propellant. The candidates consisted of derivatives of existing
engines as well as a new advanced engine. The following paragraphs discuss the
performaﬁce characteristiecs of the advanced engine and the program levei comparison

of the candidates.

4.1.3.1 Advanced Engine Characteristics

Specific Impulse and Weight. Engine performance data were available from Pratt
and Whitney, Rocketdyne and Aerojet for advanced oxygen/hydrogen engines currently
being studied under NASA contracts. Typical specific impulse data from these studies
are shown by figure 4.1-5. The large variations in specific impulse between the
manufacturers results from the lack of test data for nozzle expansion ratios greater
than 400/1. The differences in performance are due to different methods of
extrapolating nozzle performance from the lower area ratios and these discrepancies
can only be finally resolved when higher area ratio test data are available. The
manufacturers weights data shown by figure 4.1-6 also exhibit large differences. The
weight differences are, in part, due to different type designs. The Aerojet weights
shown do not include retractable nozzles and zero NPSH pumps as do the Rocketdyne

and Pratt and Whitney data. Adding estimated weights for a retractable nozzle and
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zero NPSH pumps to the Aerojet data at 5000 Ibf, 1000/1 area ratio results in
approximately the same weight as shown by Rocketdyne but does not fully reconcile
area ratio-weight trends. Trade studies investigating the effect of thrust were
conducted using the Aerojet specific impulse data, which is reasonably conservative, and

the Rocketdyne weight trends.

Thrust Level. Thrust level selection for the advanced engine took into account the
number of engines required and the influence of propellant leading. Two engines have
been incorporated as a result of the cost optimum reliability analysis performed for
unmanned OTV application and described in Volume III. In addition, the criteria of no
single point failures for manned OTV missions was best satisfied by two fully operational
engines.

The influence of thrust level on propellant loading is shown in figure 4.1-7. Also
included in this data is the influence of the number of perigee burns used on the up leg
of a mission. The minimum loading is achieved using two perigee burns and a thrust
level of 4000 Ibf per engine. An engine thrust level of 5000 lbf was selected to provide

for margin and growth potential.

4.1.3.2 Engine Comparison and Selection

The key characteristics of the investigated engines are shown in table 4.1-1. In
the case of the advanced engine it should be noted that several of the parameters have a
value specified for both space and ground versions of the engine. Most significant of the
differences between engines are those involving weight (value shown is for one engine
and two is the baseline), [sp particularly for low g applications, life, and development
time and cost. The key issue in this trade was whether the benefits of the advanced
space engine (ASE) can offset its higher development cost.

Propellant requirement and payload capability for OTV's using the candidate
engines is presented in figure 4.1-8. For the case of performing the manned GEO
servicing sortie (MGSS) mission, the ASE provides an 8.6% and 14% advantage over the
RL10-III and RL10-IIB, respectively. Using a fixed amount of usable propellant for a
GEO payload delivery mission, the ASE provides a 16.2% and 29% advantage over the
RL10-III and RL10-[IB, respectively. In both cases, the high Isp and lower weight per
engine are the major contributing factors.

The undiscounted and discounted life eycle cost (LCC) comparison of the main
engines are presented in figure 4.1-9 in terms of their influence on total OTV program
cost. An OTV with ASE's provides a 4.4% and 8.4% advantage over the RL10-III and
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RL10-IIB, respectively. However, the ASE does have higher development cost and thus
the discounted LCC comparison is closer which makes the time phased cost comparison
an important parameter.

The plots shown in figure 4.1-10 present the cum LCC difference by year between
a reference vehicle and any alternate vehicle in both discounted and undiscounted
dollars. The influence of discounting in terms of how soon a given option begins to
payback is clearly indicated. The reference vehicle has been chosen as one which uses
ASE'S and as such is indicated by the zero dollar line. For the discounted case, which is
most significant in terms of decisions when considering advanced hardware/programs,
the data indicates the reference vehicle using ASE is increasingly more expensive than
the alternative out to the point of beginning to fly the missions in 1994. In subsequent
years however, the ASE is more efficient in terms of performance and requires less
propellant thus lower recurring cost. By about 2001 the reference OTV with ASE's
becomes cheaper than an RL10-11B OTV and cheaper than an OTV with RL10-111 in
2005. ‘

Our recommendations for main engine for OTV application is the advanced
LO92/LH2 system. Each engine has a thrust level of 5000 lbf, Pe = 1500 psia, expansion
ratio of 1000, and Isp of 483 sec. Although the discounted payback relative to the
closest competitor (RL10-111) takes a little longer than desired, other advantages such
as additional performance capability to handle changes in mission requirements and
better operations features in terms of dealing with design life and maintenance justify
the selection of the ASE.

4.1.3.3 GB OTV Engine Selection

Only the advanced engine was considered for GB OTV application because the
other engines did not have sufficient performance to allow a 12k 1bm payload to be
flown in a single 72k lbm STS flight (reusable mode). Discussion of the GB OTV

performance is presented in Vol. IIl.

4.1.4 Baseline System Description

Key characteristics of the baseline main propulsion system resulting from the
trades and analyses is shown in figure 4.1-11. This system which uses LOg2/LH2
propellant and advanced engines provided the least program cost (discounted), good
growth capability and a minimum of risk. Two engines and redundant valves throughout
the system result in a cost optimum design for unmanned missions and satisfies manned

mission criteria of no credible single point failures. The retractable nozzle feature
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allow the engines to be stowed behind the heat shield during the aeromaneuver. The
engines also incorporate the features necessary to allow autogeneous pressurization.

The propellant loading sensitivity of the system to engine thrust level and Isp is
shown in figure 4.1-12. For example, if specific impulse is two seconds lower than the
baseline of 483 sec only a 600 lb propellant penalty will result. Should the optimum
thrust level of 4000 lbf be used instead of 5000 lbf the propellant savings would only be
250 lbs.

4.2 Reaction Control System
The primary emphasis in the RCS area was to compare alternative propellants and

their overall system impact.

4.2.1 RCS Requirements

The purpose for the reaction control system (RCS) is to control the vehicle
orientation during coasting periods and perform maneuvers which do not warrant use of
the main propulsion system. Top level requirements to sﬁpport the OTV missions and
objectives are:
a. Provide thrust for delta-velocity maneuvers of less than 20 fps.
b Be reuseable for at least 20 missions to minimize recurring costs.
c. Satisfy man-rating requirements.
d Control orientation of the vehicle and provide initial pointing for main propulsion

system start.

®

Be capable of operating in either a ground based or space based mode.
Be compatible with Shuttle launch.

g. Provide six degree of freedom control for docking maneuvers.

The delta V budget for the RCS is shown in table 4.2-1. The modifications
proposed and used by Boeing primarily reflect use of the MPS rather than RCS for any

individual orbit correction burn greater than 20 fps.

4.2.2 RCS Propellant Trade

Comparison of the RCS propellant alternatives were done using a ballute braked
space based OTV. The results of this trade however are applicable to all vehicle
_configurations described in section 2.0. The only differences in the RCS for the

different vehicles would be the engine sizes needed to provide the control authority
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required for the different moments of inertia and a small variation in propellant

quantity.

4.2.2.1 RCS Configuration Concepts

The reaction control systems analyzed for the OTV were a monopropellant
hydrazine system and a hydrogen/oxygen system using common storage of the
propellants with the fuel cell reactants.

The schematic of the hydrazine system shown in figure 4.2-1 indicates the
functional arrangement of the thrusters, tanks and other components. Redundancy for
manned missions required 24 thrusters to provide six degrees of control. Only 16
thrusters would be required for unmanned missions. Thrusters are arranged in four
clusters with six thrusters each. Steady state thrust of each thruster is approximately
30 Ibf at the maximum operating pressure of 380 psia. The minimum impulse bit is 0.30
Ibf-see. The thrusters are provided with thermostatically controlled electrical heaters
to prevent propellant freezing. The propellant tanks contain bladders to separate the
hydrazine from the nitrogen pressurizing gas and provide positive liquid expulsion. Each
tank is connected to a manifold to distribute the propellant to the thruster clusters.
Thermostatically controlled electrical heaters maintain the tanks, manifold and
connecting lines above the freezing temperature of the hydrazine propellant. Six tanks
are used because packing within the available envelope was found to be difficult with a
fewer number of larger tanks.

The concept for the supercritical cryogenic oxygen/hydrogen system is shown in
figure 4.2-2. The propellant has common storage with the fuel cell reactants. The
electrical heaters in the eryogenic tanks are controlled by pressure switches to maintain
approximately 300 psia pressure in the hydrogen tank and 900 psia in the oxygen tank.
The advanced technology RCS thrusters provide approximately 410 seconds specific
impulse. The system uses 24 thrusters the same as the monopropellant system to

provide redundancy and satisfy man rating requirements.

4.2.2.2 Concept Comparison and Selection

Weight characteristics and trends were developed for monopropellant hydrazine
and cryogenic oxygen/ﬁydrogen reaction control systems as a function of total impulse
requirements as shown in figure 4.2-3. The simpler monopropellant system has the
lowest dry weight but the total weight inecluding propellant is higher than the
oxygen/hydrogen system for total impulse requirements higher than about 60,000

Ibf-sec. A typical OTV delivery mission with 20,000 lbm payload requires an RCS total
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impulse of approximately 21,7000 lbf-see. The oxygen/hydrogen RCS weight including
propellant for this total impulse is 385 lbm lower in weight than the monopropellant
system for the same mission requirement.

Summary characteristies for the two concepts are presented in table 4.2-2. The
dry weight of the cryogenic oxygen/hydrogen system is approximately 75 lbm heavier
than the hydrazine system. The cryogenic RCS propellant quantity is less however
because of having a higher Isp. The total system weight for the oxygen/hydrogen
concept is also lower resulting in less MPS propellant. The net benefit of the cryo
system on a per flight resupply basis is 660 lbs.

Total program life eycle cost comparisons shown in figure 4.2-4 found the two
systems extremely close but with a small advantage for the hydrazine system. The
comparison of L